pybind11 Documentation

Wenzel Jakob

Mar 11, 2022
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Changelog</td>
<td>3</td>
</tr>
<tr>
<td>2 Upgrade guide</td>
<td>29</td>
</tr>
<tr>
<td>3 Installing the library</td>
<td>37</td>
</tr>
<tr>
<td>4 First steps</td>
<td>39</td>
</tr>
<tr>
<td>5 Object-oriented code</td>
<td>44</td>
</tr>
<tr>
<td>6 Build systems</td>
<td>53</td>
</tr>
<tr>
<td>7 Functions</td>
<td>62</td>
</tr>
<tr>
<td>8 Classes</td>
<td>72</td>
</tr>
<tr>
<td>9 Exceptions</td>
<td>93</td>
</tr>
<tr>
<td>10 Smart pointers</td>
<td>99</td>
</tr>
<tr>
<td>11 Type conversions</td>
<td>102</td>
</tr>
<tr>
<td>12 Python C++ interface</td>
<td>122</td>
</tr>
<tr>
<td>13 Embedding the interpreter</td>
<td>136</td>
</tr>
<tr>
<td>14 Miscellaneous</td>
<td>141</td>
</tr>
<tr>
<td>15 Frequently asked questions</td>
<td>147</td>
</tr>
<tr>
<td>16 Benchmark</td>
<td>152</td>
</tr>
<tr>
<td>17 Limitations</td>
<td>155</td>
</tr>
<tr>
<td>18 Reference</td>
<td>157</td>
</tr>
<tr>
<td>19 CMake helpers</td>
<td>177</td>
</tr>
<tr>
<td>Bibliography</td>
<td>181</td>
</tr>
<tr>
<td>Index</td>
<td>182</td>
</tr>
</tbody>
</table>
pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python library by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection.

The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency.

Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn’t relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (3.6+, or PyPy) and the C++ standard library. This compact implementation was possible thanks to some of the new C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations.

Tutorial and reference documentation is provided at pybind11.readthedocs.io. A PDF version of the manual is available here. And the source code is always available at github.com/pybind/pybind11.

Core features

pybind11 can map the following core C++ features to Python:

- Functions accepting and returning custom data structures per value, reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Smart pointers with reference counting like std::shared_ptr
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended in Python

Goodies

In addition to the core functionality, pybind11 provides some extra goodies:

- Python 3.6+, and PyPy3 7.3 are supported with an implementation-agnostic interface (pybind11 2.9 was the last version to support Python 2 and 3.5).
- It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside the resulting Python function object.
- pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer custom data types.
It’s easy to expose the internal storage of custom data types through Python’s buffer protocols. This is handy e.g. for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations.

• pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more NumPy array arguments.

• Python’s slice-based access and assignment operations can be supported with just a few lines of code.

• Everything is contained in just a few header files; there is no need to link against any additional libraries.

• Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python. A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, reported a binary size reduction of 5.4x and compile time reduction by 5.8x.

• Function signatures are precomputed at compile time (using constexpr), leading to smaller binaries.

• With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects.

Supported compilers
1. Clang/LLVM 3.3 or newer (for Apple Xcode’s clang, this is 5.0.0 or newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2017 or newer
4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
5. Cygwin/GCC (previously tested on 2.5.1)
6. NVCC (CUDA 11.0 tested in CI)
7. NVIDIA PGI (20.9 tested in CI)

About
This project was created by Wenzel Jakob. Significant features and/or improvements to the code were contributed by Jonas Adler, Lori A. Burns, Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston, Axel Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov Johan Mabille, Tomasz Miasko, Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.

We thank Google for a generous financial contribution to the continuous integration infrastructure used by this project.

Contributing
See the contributing guide for information on building and contributing to pybind11.

License
pybind11 is provided under a BSD-style license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.
Starting with version 1.8.0, pybind11 releases use a semantic versioning policy.

1.1 IN DEVELOPMENT

Changes will be added here periodically.

1.2 Version 2.9.1 (Feb 2, 2022)

Changes:

- If possible, attach Python exception with `py::raise_from` to `TypeError` when casting from C++ to Python. This will give additional info if Python exceptions occur in the caster. Adds a test case of trying to convert a set from C++ to Python when the hash function is not defined in Python. #3605
- Add a mapping of C++11 nested exceptions to their Python exception equivalent using `py::raise_from`. This attaches the nested exceptions in Python using the `__cause__` field. #3608
- Propagate Python exception traceback using `raise_from` if a pybind11 function runs out of overloads. #3671
- `py::multiple_inheritance` is now only needed when C++ bases are hidden from pybind11. #3650 and #3659

Bug fixes:

- Remove a boolean cast in `numpy.h` that causes MSVC C4800 warnings when compiling against Python 3.10 or newer. #3669
- Render `py::bool_` and `py::float_` as `bool` and `float` respectively. #3622

Build system improvements:

- Fix CMake extension suffix computation on Python 3.10+. #3663
- Allow `CMAKE_ARGS` to override CMake args in pybind11’s own `setup.py`. #3577
- Remove a few deprecated c-headers. #3610
- More uniform handling of test targets. #3590
- Add clang-tidy readability check to catch potentially swapped function args. #3611
1.3 Version 2.9.0 (Dec 28, 2021)

This is the last version to support Python 2.7 and 3.5.

New Features:
- Allow py::args to be followed by other arguments; the remaining arguments are implicitly keyword-only, as if a py::kw_only{} annotation had been used. #3402

Changes:
- Make str/bytes/memoryview more interoperable with std::string_view. #3521
- Replace _ with const_name in internals, avoid defining pybind::_ if _ defined as macro (common gettext usage) #3423

Bug fixes:
- Fix a rare warning about extra copy in an Eigen constructor. #3486
- Fix caching of the C++ overrides. #3465
- Add missing std::forward calls to some cpp_function overloads. #3443
- Support PyPy 7.3.7 and the PyPy3.8 beta. Test python-3.11 on PRs with the python_dev label. #3419
- Replace usage of deprecated Eigen::MappedSparseMatrix with Eigen::Map<Eigen::SparseMatrix<.. ,>> for Eigen 3.3+. #3499
- Tweaks to support Microsoft Visual Studio 2022. #3497

Build system improvements:
- Nicer CMake printout and IDE organisation for pybind11’s own tests. #3479
- CMake: report version type as part of the version string to avoid a spurious space in the package status message. #3472
- Flags starting with -g in $CFLAGS and $CPPFLAGS are no longer overridden by .Pybind11Extension. #3436
- Ensure ThreadPool is closed in setup_helpers. #3548
- Avoid LTS on mips64 and ppc64le (reported broken). #3557

1.4 v2.8.1 (Oct 27, 2021)

Changes and additions:
- The simple namespace creation shortcut added in 2.8.0 was deprecated due to usage of CPython internal API, and will be removed soon. Use py::module::import("types").attr("SimpleNamespace"). #3374
- Add C++ Exception type to throw and catch AttributeError. Useful for defining custom __setattr__ and __getattr__ methods. #3387

Fixes:
- Fixed the potential for dangling references when using properties with std::optional types. #3376
- Modernize usage of PyCodeObject on Python 3.9+ (moving toward support for Python 3.11a1) #3368
- A long-standing bug in eigen.h was fixed (originally PR #3343). The bug was unmasked by newly added static_assert's in the Eigen 3.4.0 release. #3352
- Support multiple raw inclusion of CMake helper files (Conan.io does this for multi-config generators). #3420
• Fix harmless warning on upcoming CMake 3.22. #3368
• Fix 2.8.0 regression with MSVC 2017 + C++17 mode + Python 3. #3407
• Fix 2.8.0 regression that caused undefined behavior (typically segfaults) in make_key_iterator/make_value_iterator if dereferencing the iterator returned a temporary value instead of a reference. #3348

1.5 v2.8.0 (Oct 4, 2021)

New features:
• Added py::raise_from to enable chaining exceptions. #3215
• Allow exception translators to be optionally registered local to a module instead of applying globally across all pybind11 modules. Use register_local_exception_translator(ExceptionTranslator&& translator) instead of register_exception_translator(ExceptionTranslator&& translator) to keep your exception remapping code local to the module. #2650
• Add make_simple_namespace function for instantiating Python SimpleNamespace objects. Deprecated in 2.8.1. #2840
• pybind11::scoped_interpreter and initialize_interpreter have new arguments to allow sys.argv initialization. #2341
• Allow Python builtins to be used as callbacks in CPython. #1413
• Added view to view arrays with a different datatype. #987
• Implemented reshape on arrays. #984
• Enable defining custom __new__ methods on classes by fixing bug preventing overriding methods if they have non-pybind11 siblings. #3265
• Add make_value_iterator(), and fix make_key_iterator() to return references instead of copies. #3293
• Improve the classes generated by bind_map: #3310
 – Change .items from an iterator to a dictionary view.
 – Add .keys and .values (both dictionary views).
 – Allow __contains__ to take any object.
• pybind11::custom_type_setup was added, for customizing the PyHeapTypeObject corresponding to a class, which may be useful for enabling garbage collection support, among other things. #3287

Changes:
• Set __file__ constant when running eval_file in an embedded interpreter. #3233
• Python objects and (C++17) std::optional now accepted in py::slice constructor. #1101
• The pybind11 proxy types str, bytes, bytearray, tuple, list now consistently support passing ssize_t values for sizes and indexes. Previously, only size_t was accepted in several interfaces. #3219
• Avoid evaluating PYBIND11_TLS_REPLACE_VALUE arguments more than once. #3290

Fixes:
• Bug fix: enum value’s __int__ returning non-int when underlying type is bool or of char type. #1334
• Fixes bug in setting error state in Capsule’s pointer methods. #3261
• A long-standing memory leak in py::cpp_function::initialize was fixed. #3229
• Fixes thread safety for some `pybind11::type_caster` which require lifetime extension, such as for `std::string_view`. #3237
• Restore compatibility with gcc 4.8.4 as distributed by ubuntu-trusty, linuxmint-17. #3270

Build system improvements:
• Fix regression in CMake Python package config: improper use of absolute path. #3144
• Cached Python version information could become stale when CMake was re-run with a different Python version. The build system now detects this and updates this information. #3299
• Specified UTF8-encoding in setup.py calls of open(). #3137
• Fix a harmless warning from CMake 3.21 with the classic Python discovery. #3220
• Eigen repo and version can now be specified as cmake options. #3324

Backend and tidying up:
• Reduced thread-local storage required for keeping alive temporary data for type conversion to one key per ABI version, rather than one key per extension module. This makes the total thread-local storage required by pybind11 2 keys per ABI version. #3275
• Optimize NumPy array construction with additional moves. #3183
• Conversion to `std::string` and `std::string_view` now avoids making an extra copy of the data on Python >= 3.3. #3257
• Remove const modifier from certain C++ methods on Python collections (list, set, dict) such as (clear(), append(), insert(), etc...) and annotated them with `py-non-const`.
• Enable readability clang-tidy-const-return and remove useless consts. #3254 #3194
• The clang-tidy google-explicit-constructor option was enabled. #3250
• Mark a pytype move constructor as noexcept (perf). #3236
• Enable clang-tidy check to guard against inheritance slicing. #3210
• Legacy warning suppression pragma were removed from eigen.h. On Unix platforms, please use -isystem for Eigen include directories, to suppress compiler warnings originating from Eigen headers. Note that CMake does this by default. No adjustments are needed for Windows. #3198
• Format pybind11 with isort consistent ordering of imports #3195
• The warnings-suppression “pragma clamp” at the top/bottom of pybind11 was removed, clearing the path to refactoring and IWYU cleanup. #3186
• Enable most bugprone checks in clang-tidy and fix the found potential bugs and poor coding styles. #3166
• Add clang-tidy-readability rules to make boolean casts explicit improving code readability. Also enabled other misc and readability clang-tidy checks. #3148
• Move object in `.pop()` for list. #3116
1.6 v2.7.1 (Aug 3, 2021)

Minor missing functionality added:

- Allow Python builtins to be used as callbacks in CPython. #1413

Bug fixes:

- Fix regression in CMake Python package config: improper use of absolute path. #3144
- Fix Mingw64 and add to the CI testing matrix. #3132
- Specified UTF8-encoding in setup.py calls of open(). #3137
- Add clang-tidy-readability rules to make boolean casts explicit improving code readability. Also enabled other misc and readability clang-tidy checks. #3148
- Move object in .pop() for list. #3116

Backend and tidying up:

- Removed and fixed warning suppressions. #3127 #3129 #3135 #3141 #3142 #3150 #3152 #3160 #3161

1.7 v2.7.0 (Jul 16, 2021)

New features:

- Enable py::implicitly_convertible<py::none, ...> for py::class_-wrapped types. #3059
- Allow function pointer extraction from overloaded functions. #2944
- NumPy: added .char_() to type which gives the NumPy public char result, which also distinguishes types by bit length (unlike .kind()). #2864
- Add pybind11::bytearray to manipulate bytearray similar to bytes. #2799
- pybind11/stl/filesystem.h registers a type caster that, on C++17/Python 3.6+, converts std::filesystem::path to pathlib.Path and any os.PathLike to std::filesystem::path. #2730
- A PYBIND11_VERSION_HEX define was added, similar to PY_VERSION_HEX. #3120

Changes:

- py::str changed to exclusively hold PyUnicodeObject. Previously py::str could also hold bytes, which is probably surprising, was never documented, and can mask bugs (e.g. accidental use of py::str instead of py::bytes). #2409
- Add a safety guard to ensure that the Python GIL is held when C++ calls back into Python via object_api<>:operator() (e.g. py::function __call__). (This feature is available for Python 3.6+ only.) #2919
- Catch a missing self argument in calls to __init__(). #2914
- Use std::string_view if available to avoid a copy when passing an object to a std::ostream. #3042
- An important warning about thread safety was added to the iostream.h documentation; attempts to make py::scoped_ostream_redirect thread safe have been removed, as it was only partially effective. #2995

Fixes:

- Performance: avoid unnecessary strlen calls. #3058
- Fix auto-generated documentation string when using const T in pyarray_t. #3020
• Unify error messages thrown by simple_collector/unpacking_collector. #3013

• pybind11::builtin_exception is now explicitly exported, which means the types included/defined in different modules are identical, and exceptions raised in different modules can be caught correctly. The documentation was updated to explain that custom exceptions that are used across module boundaries need to be explicitly exported as well. #2999

• Fixed exception when printing UTF-8 to a scoped_ostream_redirect. #2982

• Pickle support enhancement: setstate implementation will attempt to setattr__dict__ only if the unpickled dict object is not empty, to not force use of py::dynamic_attr() unnecessarily. #2972

• Allow negative timedelta values to roundtrip. #2870

• Fix unchecked errors could potentially swallow signals/other exceptions. #2863

• Add null pointer check with std::localtime. #2846

• Fix the weakref constructor from py::object to create a new weakref on conversion. #2832

• Avoid relying on exceptions in C++17 when getting a shared_ptr holder from a shared_from_this class. #2819

• Allow the codec’s exception to be raised instead of RuntimeError when casting from py::str to std::string. #2903

Build system improvements:

• In setup_helpers.py, test for platforms that have some multiprocessing features but lack semaphores, which ParallelCompile requires. #3043

• Fix pybind11_INCLUDE_DIR in case CMAKE_INSTALL_INCLUDEDIR is absolute. #3005

• Fix bug not respecting WITH_SOABI or WITHOUT_SOABI to CMake. #2938

• Fix the default Pybind11Extension compilation flags with a Mingw64 python. #2921

• Clang on Windows: do not pass /MP (ignored flag). #2824

• pybind11.setup_helpers.intree_extensions can be used to generate Pybind11Extension instances from cpp files placed in the Python package source tree. #2831

Backend and tidying up:

• Enable clang-tidy performance, readability, and modernization checks throughout the codebase to enforce best coding practices. #3046, #3049, #3051, #3052, #3080, and #3094

• Checks for common misspellings were added to the pre-commit hooks. #3076

• Changed Werror to stricter Werror-all for Intel compiler and fixed minor issues. #2948

• Fixed compilation with GCC < 5 when the user defines _GLIBCXX_USE_CXX11_ABI. #2956

• Added nox support for easier local testing and linting of contributions. #3101 and #3121

• Avoid RTD style issue with docutils 0.17+. #3119

• Support pipx run, such as pipx run pybind11 --include for a quick compile. #3117
1.8 v2.6.2 (Jan 26, 2021)

Minor missing functionality added:

- enum: add missing Enum.value property. #2739
- Allow thread termination to be avoided during shutdown for CPython 3.7+ via .disarm for gil_scoped_acquire/gil_scoped_release. #2657

Fixed or improved behavior in a few special cases:

- Fix bug where the constructor of object subclasses would not throw on being passed a Python object of the wrong type. #2701
- The type_caster for integers does not convert Python objects with __int__ anymore with noconvert or during the first round of trying overloads. #2698
- When casting to a C++ integer, __index__ is always called and not considered as conversion, consistent with Python 3.8+. #2801

Build improvements:

- Setup helpers: extra_compile_args and extra_link_args automatically set by Pybind11Extension are now prepended, which allows them to be overridden by user-set extra_compile_args and extra_link_args. #2808
- Setup helpers: Don’t trigger unused parameter warning. #2735
- CMake: Support running with --warn-uninitialized active. #2806
- CMake: Avoid error if included from two submodule directories. #2804
- CMake: Fix STATIC / SHARED being ignored in FindPython mode. #2796
- CMake: Respect the setting for CMAKE_CXX_VISIBILITY_PRESET if defined. #2793
- CMake: Fix issue with FindPython2/FindPython3 not working with pybind11::embed. #2662
- CMake: mixing local and installed pybind11’s would prioritize the installed one over the local one (regression in 2.6.0). #2716

Bug fixes:

- Fixed segfault in multithreaded environments when using scoped_ostream_redirect. #2675
- Leave docstring unset when all docstring-related options are disabled, rather than set an empty string. #2745
- The module key in builtins that pybind11 uses to store its internals changed from std::string to a python str type (more natural on Python 2, no change on Python 3). #2814
- Fixed assertion error related to unhandled (later overwritten) exception in CPython 3.8 and 3.9 debug builds. #2685
- Fix py::gil_scoped_acquire assert with CPython 3.9 debug build. #2683
- Fix issue with a test failing on pytest 6.2. #2741

Warning fixes:

- Fix warning modifying constructor parameter ‘flag’ that shadows a field of ‘set_flag’ [-Wshadow-field-in-constructor-modified]. #2780
- Suppressed some deprecation warnings about old-style __init__/__setstate__ in the tests. #2759

Valgrind work:

- Fix invalid access when calling a pybind11 __init__ on a non-pybind11 class instance. #2755
• Fixed various minor memory leaks in pybind11’s test suite. #2758
• Resolved memory leak in cpp_function initialization when exceptions occurred. #2756
• Added a Valgrind build, checking for leaks and memory-related UB, to CI. #2746

Compiler support:
• Intel compiler was not activating C++14 support due to a broken define. #2679
• Support ICC and NVIDIA HPC SDK in C++17 mode. #2729
• Support Intel OneAPI compiler (ICC 20.2) and add to CI. #2573

1.9 v2.6.1 (Nov 11, 2020)

• py::exec, py::eval, and py::eval_file now add the builtins module as "__builtins__" to their globals argument, better matching exec and eval in pure Python. #2616
• setup_helpers will no longer set a minimum macOS version higher than the current version. #2622
• Allow deleting static properties. #2629
• Seal a leak in def_buffer, cleaning up the capture object after the class object goes out of scope. #2634
• pybind11_INCLUDE_DIRS was incorrect, potentially causing a regression if it was expected to include PYTHON_INCLUDE_DIRS (please use targets instead). #2636
• Added parameter names to the py::enum_ constructor and methods, avoiding arg0 in the generated docstrings. #2637
• Added needs_recompile optional function to the ParallelCompiler helper, to allow a recompile to be skipped based on a user-defined function. #2643

1.10 v2.6.0 (Oct 21, 2020)

See v2.6 for help upgrading to the new version.

New features:
• Keyword-only arguments supported in Python 2 or 3 with py::kw_only(). #2100
• Positional-only arguments supported in Python 2 or 3 with py::pos_only(). #2459
• py::is_final() class modifier to block subclassing (CPython only). #2151
• Added py::prepend(), allowing a function to be placed at the beginning of the overload chain. #1131
• Access to the type object now provided with py::type::of<T>() and py::type::of(h). #2364
• Perfect forwarding support for methods. #2048
• Added py::error_already_set::discard_as_unraisable(). #2372
• py::hash is now public. #2217
• py::class_<union_type> is now supported. Note that writing to one data member of the union and reading another (type punning) is UB in C++. Thus pybind11-bound enums should never be used for such conversions. #2320.
• Classes now check local scope when registering members, allowing a subclass to have a member with the same name as a parent (such as an enum). #2335
Code correctness features:

- Error now thrown when __init__ is forgotten on subclasses. #2152
- Throw error if conversion to a pybind11 type if the Python object isn’t a valid instance of that type, such as py::bytes(o) when py::object o isn’t a bytes instance. #2349
- Throw if conversion to str fails. #2477

API changes:

- py::module was renamed py::module_ to avoid issues with C++20 when used unqualified, but an alias py::module is provided for backward compatibility. #2489
- Public constructors for py::module_ have been deprecated; please use pybind11::module_::create_extension_module if you were using the public constructor (fairly rare after PYBIND11_MODULE was introduced). #2552
- PYBIND11_OVERRIDE* macros and get_overload function replaced by correctly-named PYBIND11_OVERRIDE* and get_override, fixing inconsistencies in the presence of a closing ; in these macros. get_type_override is deprecated. #2325

Packaging / building improvements:

- The Python package was reworked to be more powerful and useful. #2433
 - Building with setuptools is easier thanks to a new pybind11.setup_helpers module, which provides utilities to use setuptools with pybind11. It can be used via PEP 518, setup_requires, or by directly importing or copying setup_helpers.py into your project.
 - CMake configuration files are now included in the Python package. Use pybind11.get_cmake_dir() or python -m pybind11 --cmakedir to get the directory with the CMake configuration files, or include the site-packages location in your CMAKE_MODULE_PATH. Or you can use the new pybind11[global] extra when you install pybind11, which installs the CMake files and headers into your base environment in the standard location.
 - pybind11-config is another way to write python -m pybind11 if you have your PATH set up.
 - Added external typing support to the helper module, code from import pybind11 can now be type checked. #2588
- Minimum CMake required increased to 3.4. #2338 and #2370
 - Full integration with CMake’s C++ standard system and compile features replaces PYBIND11_CPP_STANDARD.
 - Generated config file is now portable to different Python/compiler/CMake versions.
 - Virtual environments prioritized if PYTHON_EXECUTABLE is not set (venv, virtualenv, and conda) (similar to the new FindPython mode).
 - Other CMake features now natively supported, like CMAKE_INTERPROCEDURAL_OPTIMIZATION, set(CMAKE_CXX_VISIBILITY_PRESET hidden).
 - CUDA as a language is now supported.
 - Helper functions pybind11_strip, pybind11_extension, pybind11_find_import added, see CMake helpers.
 - Optional FindPython mode and Advanced: NOPYTHON mode with CMake. #2370
- Uninstall target added. #2265 and #2346
- pybind11_add_module() now accepts an optional OPT_SIZE flag that switches the binding target to size-based optimization if the global build type can not always be fixed to MinSizeRel (except in debug mode, where
optimizations remain disabled). `MinSizeRel` or this flag reduces binary size quite substantially (~25% on some platforms). #2463

Smaller or developer focused features and fixes:

- Moved `mkdoc.py` to a new repo, `pybind11-mkdoc`. There are no longer submodules in the main repo.
- `py::memoryview` segfault fix and update, with new `py::memoryview::from_memory` in Python 3, and documentation. #2223
- Fix for `buffer_info` on Python 2. #2503
- If `__eq__` defined but not `__hash__`, `__hash__` is now set to `None`. #2291
- `py::ellipsis` now also works on Python 2. #2360
- Pointer to `std::tuple` & `std::pair` supported in cast. #2334
- Small fixes in NumPy support. `py::array` now uses `py::ssize_t` as first argument type. #2293
- Added missing signature for `py::array`. #2363
- `unchecked_mutable_reference` has access to operator `()` and `[]` when const. #2514
- `py::vectorize` is now supported on functions that return void. #1969
- `py::capsule` supports `get_pointer` and `set_pointer`. #1131
- Fix crash when different instances share the same pointer of the same type. #2252
- Fix for `py::len` not clearing Python’s error state when it fails and throws. #2575
- Bug fixes related to more extensive testing, new GitHub Actions CI. #2321
- Bug in timezone issue in Eastern hemisphere midnight fixed. #2438
- `std::chrono::time_point` now works when the resolution is not the same as the system. #2481
- Bug fixed where `py::array_t` could accept arrays that did not match the requested ordering. #2484
- Avoid a segfault on some compilers when types are removed in Python. #2564
- `py::arg::none()` is now also respected when passing keyword arguments. #2611
- PyPy fixes, PyPy 7.3.x now supported, including PyPy3. (Known issue with PyPy2 and Windows #2596). #2146
- CPython 3.9.0 workaround for undefined behavior (macOS segfault). #2576
- CPython 3.9 warning fixes. #2253
- Improved C++20 support, now tested in CI. #2489 #2599
- Improved but still incomplete debug Python interpreter support. #2025
- NVCC (CUDA 11) now supported and tested in CI. #2461
- NVIDIA PGI compilers now supported and tested in CI. #2475
- At least Intel 18 now explicitly required when compiling with Intel. #2577
- Extensive style checking in CI, with `pre-commit` support. Code modernization, checked by clang-tidy.
- Expanded docs, including new main page, new installing section, and CMake helpers page, along with over a dozen new sections on existing pages.
- In GitHub, new docs for contributing and new issue templates.
1.11 v2.5.0 (Mar 31, 2020)

- Use C++17 fold expressions in type casters, if available. This can improve performance during overload resolution when functions have multiple arguments. #2043.
- Changed include directory resolution in pybind11/__init__.py and installation in setup.py. This fixes a number of open issues where pybind11 headers could not be found in certain environments. #1995.
- C++20 char8_t and u8string support. #2026.
- CMake: search for Python 3.9. bb9e91.
- Fixes for MSYS-based build environments. #2087, #2053.
- STL bindings for std::vector<...>::clear. #2074.
- Read-only flag for py::buffer. #1466.
- Exception handling during module initialization. bf2b031.
- Support linking against a CPython debug build. #2025.
- Fixed issues involving the availability and use of aligned new and delete. #1988, 759221.
- Fixed a resource leak upon interpreter shutdown. #2020.
- Fixed error handling in the boolean caster. #1976.

1.12 v2.4.3 (Oct 15, 2019)

- Adapt pybind11 to a C API convention change in Python 3.8. #1950.

1.13 v2.4.2 (Sep 21, 2019)

- Replaced usage of a C++14 only construct. #1929.
- Made an ifdef future-proof for Python >= 4. f3109d.

1.14 v2.4.1 (Sep 20, 2019)

- Fixed a problem involving implicit conversion from enumerations to integers on Python 3.8. #1780.

1.15 v2.4.0 (Sep 19, 2019)

- Try harder to keep pybind11-internal data structures separate when there are potential ABI incompatibilities. Fixes crashes that occurred when loading multiple pybind11 extensions that were e.g. compiled by GCC (libstdc++) and Clang (libc++). #1588 and c9f5a.
- Added support for __await__, __aiter__, and __anext__ protocols. #1842.
- pybind11_add_module(): don’t strip symbols when compiling in RelWithDebInfo mode. #1980.
- enum_: Reproduce Python behavior when comparing against invalid values (e.g. None, strings, etc.). Add back support for __invert__(). #1912, #1907.
• List insertion operation for `py::list`. Added `.empty()` to all collection types. Added `py::set::contains()` and `py::dict::contains()`. #1887, #1884, #1888.

• `py::details::overload_cast_impl` is available in C++11 mode, can be used like `overload_cast` with an additional set of parentheses. #1581.

• Fixed `get_include()` on Conda. #1877.

• `stl_bind.h`: negative indexing support. #1882.

• Minor CMake fix to add MinGW compatibility. #1851.

• `stl_bind.h`: negative indexing support. #1882.

• Other very minor/subtle fixes and improvements. #1329, #1910, #1863, #1847, #1890, #1860, #1848, #1821, #1837, #1833, #1748, #1852.

1.16 v2.3.0 (June 11, 2019)

• Significantly reduced module binary size (10-20%) when compiled in C++11 mode with GCC/Clang, or in any mode with MSVC. Function signatures are now always precomputed at compile time (this was previously only available in C++14 mode for non-MSVC compilers). #934.

• Add basic support for tag-based static polymorphism, where classes provide a method to returns the desired type of an instance. #1326.

• Python type wrappers (`py::handle`, `py::object`, etc.) now support map Python’s number protocol onto C++ arithmetic operators such as `operator+`, `operator/-`, etc. #1511.

• A number of improvements related to enumerations:
 1. The `enum_` implementation was rewritten from scratch to reduce code bloat. Rather than instantiating a full implementation for each enumeration, most code is now contained in a generic base class. #1511.
 2. The `value()` method of `py::enum_` now accepts an optional docstring that will be shown in the documentation of the associated enumeration. #1160.
 3. check for already existing enum value and throw an error if present. #1453.

• Support for over-aligned type allocation via C++17’s aligned new statement. #1582.

• Added `py::ellipsis()` method for slicing of multidimensional NumPy arrays #1502.

• Numerous Improvements to the `mkdoc.py` script for extracting documentation from C++ header files. #1788.

• `pybind11_add_module()`: allow including Python as a SYSTEM include path. #1416.

• `pybind11/stl.h` does not convert strings to `vector<string>` anymore. #1258.

• Mark static methods as such to fix auto-generated Sphinx documentation. #1732.

• Re-throw forced unwind exceptions (e.g. during pthread termination). #1208.

• Added `__contains__` method to the bindings of maps (`std::map`, `std::unordered_map`). #1767.

• Improvements to `gil_scoped_acquire`. #1211.

• Type caster support for `std::deque<T>`. #1609.

• Support for `std::unique_ptr` holders, whose deleters differ between a base and derived class. #1353.

• Construction of STL array/vector-like data structures from iterators. Added an `extend()` operation. #1709.

• CMakel build system improvements for projects that include non-C++ files (e.g. plain C, CUDA) in `pybind11_add_module` et al. #1678.
• Fixed asynchronous invocation and deallocation of Python functions wrapped in `std::function`. #1595.
• Fixes regarding return value policy propagation in STL type casters. #1603.
• Fixed scoped enum comparisons. #1571.
• Fixed iostream redirection for code that releases the GIL. #1368.
• A number of CI-related fixes. #1757, #1744, #1670.

1.17 v2.2.4 (September 11, 2018)

• Use new Python 3.7 Thread Specific Storage (TSS) implementation if available. #1454, #1517.
• Fixes for newer MSVC versions and C++17 mode. #1347, #1462.
• Propagate return value policies to type-specific casters when casting STL containers. #1455.
• Allow ostream-redirection of more than 1024 characters. #1479.
• Set `Py_DEBUG` define when compiling against a debug Python build. #1438.
• Untangle integer logic in number type caster to work for custom types that may only be castable to a restricted set of builtin types. #1442.
• CMake build system: Remember Python version in cache file. #1434.
• Fix for custom smart pointers: use `std::addressof` to obtain holder address instead of `operator&`. #1435.
• Properly report exceptions thrown during module initialization. #1362.
• Fixed a segmentation fault when creating empty-shaped NumPy array. #1371.
• The version of Intel C++ compiler must be >= 2017, and this is now checked by the header files. #1363.
• A few minor typo fixes and improvements to the test suite, and patches that silence compiler warnings.
• Vectors now support construction from generators, as well as `extend()` from a list or generator. #1496.

1.18 v2.2.3 (April 29, 2018)

• The `pybind11` header location detection was replaced by a new implementation that no longer depends on `pip` internals (the recently released `pip 10` has restricted access to this API). #1190.
• Small adjustment to an implementation detail to work around a compiler segmentation fault in Clang 3.3/3.4. #1350.
• The minimal supported version of the Intel compiler was >= 17.0 since `pybind11` v2.1. This check is now explicit, and a compile-time error is raised if the compiler meet the requirement. #1363.
• Fixed an endianness-related fault in the test suite. #1287.
1.19 v2.2.2 (February 7, 2018)

• Fixed a segfault when combining embedded interpreter shutdown/reinitialization with external loaded pybind11 modules. #1092.
• Eigen support: fixed a bug where Nx1/1xN numpy inputs couldn’t be passed as arguments to Eigen vectors (which for Eigen are simply compile-time fixed Nx1/1xN matrices). #1106.
• Clarified to license by moving the licensing of contributions from LICENSE into CONTRIBUTING.md: the licensing of contributions is not actually part of the software license as distributed. This isn’t meant to be a substantial change in the licensing of the project, but addresses concerns that the clause made the license non-standard. #1109.
• Fixed a regression introduced in 2.1 that broke binding functions with lvalue character literal arguments. #1128.
• MSVC: fix for compilation failures under /permissive-, and added the flag to the appveyor test suite. #1155.
• Fixed __qualname__ generation, and in turn, fixes how class names (especially nested class names) are shown in generated docstrings. #1171.
• Updated the FAQ with a suggested project citation reference. #1189.
• Fixed outdated PyPI URLs in setup.py. #1213.
• Fixed a refcount leak for arguments that end up in a py::args argument for functions with both fixed positional and py::args arguments. #1216.
• Fixed a potential segfault resulting from possible premature destruction of py::args/py::kwargs arguments with overloaded functions. #1223.
• Fixed del map[item] for a stl_bind.h bound stl map. #1229.
• Fixed a regression from v2.1.x where the aggregate initialization could unintentionally end up at a constructor taking a templated std::initializer_list<T> argument. #1249.
• Fixed an issue where calling a function with a keep_alive policy on the same nurse/patient pair would cause the internal patient storage to needlessly grow (unboundedly, if the nurse is long-lived). #1251.
• Various other minor fixes.

1.20 v2.2.1 (September 14, 2017)

• Added py::module__::reload() member function for reloading a module. #1040.
• Fixed a reference leak in the number converter. #1078.
• Fixed compilation with Clang on host GCC < 5 (old libstdc++ which isn’t fully C++11 compliant). #1062.
• Fixed a regression where the automatic std::vector<bool> caster would fail to compile. The same fix also applies to any container which returns element proxies instead of references. #1053.
• Fixed a regression where the py::keep_alive policy could not be applied to constructors. #1065.
• Fixed a nullptr dereference when loading a py::module_local type that’s only registered in an external module. #1058.
• Fixed implicit conversion of accessors to types derived from py::object. #1076.
• The name in PYBIND11_MODULE(name, variable) can now be a macro. #1082.
• Relaxed overly strict `py::pickle()` check for matching get and set types. #1064.
• Conversion errors now try to be more informative when it’s likely that a missing header is the cause (e.g. forgetting `<pybind11/stl.h>`). #1077.

1.21 v2.2.0 (August 31, 2017)

• Support for embedding the Python interpreter. See the documentation page for a full overview of the new features. #774, #889, #892, #920.

```cpp
#include <pybind11/embed.h>
namespace py = pybind11;

int main() {
    py::scoped_interpreter guard{}; // start the interpreter and keep it alive
    py::print("Hello, World!"); // use the Python API
}
```

• Support for inheriting from multiple C++ bases in Python. #693.

```cpp
from cpp_module import CppBase1, CppBase2

class PyDerived(CppBase1, CppBase2):
    def __init__(self):
        CppBase1.__init__(self) # C++ bases must be initialized explicitly
        CppBase2.__init__(self)
```

• PYBIND11_MODULE is now the preferred way to create module entry points. PYBIND11_PLUGIN is deprecated. See Macros for details. #879.

```cpp
// new
PYBIND11_MODULE(example, m) {
    m.def("add", [](int a, int b) { return a + b; });
}

// old
PYBIND11_PLUGIN(example) {
    py::module m("example");
    m.def("add", [](int a, int b) { return a + b; });
    return m.ptr();
}
```

• pybind11’s headers and build system now more strictly enforce hidden symbol visibility for extension modules. This should be seamless for most users, but see the Upgrade guide if you use a custom build system. #995.
• Support for py::module_local types which allow multiple modules to export the same C++ types without conflicts. This is useful for opaque types like std::vector<int>. py::bind_vector and py::bind_map now default to py::module_local if their elements are builtins or local types. See Module-local class bindings for details. #949, #981, #995, #997.
• Custom constructors can now be added very easily using lambdas or factory functions which return a class instance by value, pointer or holder. This supersedes the old placement-new __init__ technique. See Custom constructors for details. #805, #1014.
```cpp
struct Example {
    Example(std::string);
};
py::class_<Example>(m, "Example")
    .def(py::init<std::string>()) // existing constructor
    .def(py::init([](int n) {
        // custom constructor
        return std::make_unique<Example>(std::to_string(n));
    }));
```

- Similarly to custom constructors, pickling support functions are now bound using the py::pickle() adaptor which improves type safety. See the Upgrade guide and Pickling support for details. #1038.

- Built-in support for converting C++17 standard library types and general conversion improvements:
 1. C++17 std::variant is supported right out of the box. C++11/14 equivalents (e.g. boost::variant) can also be added with a simple user-defined specialization. See C++17 library containers for details. #811, #845, #989.
 2. Out-of-the-box support for C++17 std::string_view. #906.
 3. Improved compatibility of the built-in optional converter. #874.
 4. The bool converter now accepts numpy.bool_ and types which define __bool__ (Python 3.x) or __nonzero__ (Python 2.7). #925.
 5. C++-to-Python casters are now more efficient and move elements out of rvalue containers whenever possible. #851, #936, #938.
 6. Fixed bytes to std::string/char* conversion on Python 3. #817.
 7. Fixed lifetime of temporary C++ objects created in Python-to-C++ conversions. #924.

- Scope guard call policy for RAII types, e.g. py::call_guard<py::gil_scoped_release>(), py::call_guard<py::scoped_ostream_redirect>(). See Additional call policies for details. #740.

- Utility for redirecting C++ streams to Python (e.g. std::cout -> sys.stdout). Scope guard py::scoped_ostream_redirect in C++ and a context manager in Python. See Capturing standard output from ostream. #1009.

- Improved handling of types and exceptions across module boundaries. #915, #951, #995.

- Fixed destruction order of py::keep_alive nurse/patient objects in reference cycles. #856.

- NumPy and buffer protocol related improvements:
 1. Support for negative strides in Python buffer objects/numpy arrays. This required changing integers from unsigned to signed for the related C++ APIs. Note: If you have compiler warnings enabled, you may notice some new conversion warnings after upgrading. These can be resolved with static_cast. #782.
 2. Support std::complex and arrays inside PYBIND11_NUMPY_DTYPE. #831, #832.
 3. Support for constructing py::buffer_info and py::arrays using arbitrary containers or iterators instead of requiring a std::vector. #788, #822, #860.
 4. Explicitly check numpy version and require >= 1.7.0. #819.

- Support for allowing/prohibiting None for specific arguments and improved None overload resolution order. See Allow/Prohibiting None arguments for details. #843, #859.

- Added py::exec() as a shortcut for py::eval<py::eval_statements>() and support for C++11 raw string literals as input. See Evaluating Python expressions from strings and files. #766, #827.
• **py::vectorize()** ignores non-vectorizable arguments and supports member functions. #762.

• Support for bound methods as callbacks (pybind11/functional.h). #815.

• Allow aliasing pybind11 methods: cls.attr("foo") = cls.attr("bar"). #802.

• Don't allow mixed static/non-static overloads. #804.

• Fixed overriding static properties in derived classes. #784.

• Added support for write only properties. #1144.

• Improved deduction of member functions of a derived class when its bases aren’t registered with pybind11. #855.

```cpp
struct Base {
    int foo() { return 42; }
};

struct Derived : Base {}

// Now works, but previously required also binding 'Base'
py::class_<Derived>(m, "Derived")
    .def("foo", &Derived::foo); // function is actually from 'Base'
```

• The implementation of py::init<> now uses C++11 brace initialization syntax to construct instances, which permits binding implicit constructors of aggregate types. #1015.

```cpp
struct Aggregate {
    int a;
    std::string b;
};

py::class_<Aggregate>(m, "Aggregate")
    .def(py::init<int, const std::string &>());
```

• Fixed issues with multiple inheritance with offset base/derived pointers. #812, #866, #960.

• Fixed reference leak of type objects. #1030.

• Improved support for the /std:c++14 and /std:c++latest modes on MSVC 2017. #841, #999.

• Fixed detection of private operator new on MSVC. #893, #918.

• Intel C++ compiler compatibility fixes. #937.

• Fixed implicit conversion of py::enum_ to integer types on Python 2.7. #821.

• Added py::hash to fetch the hash value of Python objects, and .def(hash(py::self)) to provide the C++ std::hash as the Python __hash__ method. #1034.

• Fixed __truediv__ on Python 2 and __itruediv__ on Python 3. #867.

• py::capsule objects now support the name attribute. This is useful for interfacing with scipy.LowLevelCallable. #902.

• Fixed py::make_iterator's __next__() for past-the-end calls. #897.

• Added error_already_set::matches() for checking Python exceptions. #772.

• Deprecated py::error_already_set::clear(). It's no longer needed following a simplification of the py::error_already_set class. #954.

• Deprecated py::handle::operator==() in favor of py::handle::is() #825.
• Deprecated py::object::borrowed/py::object::stolen. Use py::object::borrowed_t{}/py::object::stolen_t{} instead. #771.
• Changed internal data structure versioning to avoid conflicts between modules compiled with different revisions of pybind11. #1012.
• Additional compile-time and run-time error checking and more informative messages. #786, #794, #803.
• Various minor improvements and fixes. #764, #791, #795, #840, #844, #846, #849, #858, #862, #871, #872, #881, #888, #899, #928, #931, #944, #950, #952, #962, #965, #970, #978, #979, #986, #1020, #1027, #1037.
• Testing improvements. #798, #882, #898, #900, #921, #923, #963.

1.22 v2.1.1 (April 7, 2017)

• Fixed minimum version requirement for MSVC 2015u3 #773.

1.23 v2.1.0 (March 22, 2017)

• pybind11 now performs function overload resolution in two phases. The first phase only considers exact type matches, while the second allows for implicit conversions to take place. A special noreconvert() syntax can be used to completely disable implicit conversions for specific arguments. #643, #634, #650.
• Fixed a regression where static properties no longer worked with classes using multiple inheritance. The py::metaclass attribute is no longer necessary (and deprecated as of this release) when binding classes with static properties. #679.
• Classes bound using pybind11 can now use custom metaclasses. #679.
• py::args and py::kwargs can now be mixed with other positional arguments when binding functions using pybind11. #611.
• Improved support for C++11 unicode string and character types; added extensive documentation regarding pybind11’s string conversion behavior. #624, #636, #715.
• pybind11 can now avoid expensive copies when converting Eigen arrays to NumPy arrays (and vice versa). #610.
• The “fast path” in py::vectorize now works for any full-size group of C or F-contiguous arrays. The non-fast path is also faster since it no longer performs copies of the input arguments (except when type conversions are necessary). #610.
• Added fast, unchecked access to NumPy arrays via a proxy object. #746.
• Transparent support for class-specific operator new and operator delete implementations. #755.
• Slimmer and more efficient STL-compatible iterator interface for sequence types. #662.
• Improved custom holder type support. #607.
• nullptr to None conversion fixed in various builtin type casters. #732.
• enum_ now exposes its members via a special __members__ attribute. #666.
• std::vector bindings created using stl_bind.h can now optionally implement the buffer protocol. #488.
• Automated C++ reference documentation using doxygen and breathe. #598.
• Added minimum compiler version assertions. #727.
• Improved compatibility with C++1z. #677.
• Improved py::capsule API. Can be used to implement cleanup callbacks that are involved at module destruction time. #752.
• Various minor improvements and fixes. #595, #588, #589, #603, #619, #648, #695, #720, #723, #729, #724, #742, #753.

1.24 v2.0.1 (Jan 4, 2017)
• Fix pointer to reference error in type_caster on MSVC #583.
• Fixed a segmentation in the test suite due to a typo cd7eac.

1.25 v2.0.0 (Jan 1, 2017)
• Fixed a reference counting regression affecting types with custom metaclasses (introduced in v2.0.0-rc1). #571.
• Quenched a CMake policy warning. #570.

1.26 v2.0.0-rc1 (Dec 23, 2016)
The pybind11 developers are excited to issue a release candidate of pybind11 with a subsequent v2.0.0 release planned in early January next year.

An incredible amount of effort by went into pybind11 over the last ~5 months, leading to a release that is jam-packed with exciting new features and numerous usability improvements. The following list links PRs or individual commits whenever applicable.

Happy Christmas!
• Support for binding C++ class hierarchies that make use of multiple inheritance. #410.
• PyPy support: pybind11 now supports nightly builds of PyPy and will interoperate with the future 5.7 release. No code changes are necessary, everything “just” works as usual. Note that we only target the Python 2.7 branch for now; support for 3.x will be added once its cpyext extension support catches up. A few minor features remain unsupported for the time being (notably dynamic attributes in custom types). #527.
• Significant work on the documentation – in particular, the monolithic advanced.rst file was restructured into a easier to read hierarchical organization. #448.
• Many NumPy-related improvements:
 1. Object-oriented API to access and modify NumPy ndarray instances, replicating much of the corresponding NumPy C API functionality. #402.
 2. NumPy array dtype array descriptors are now first-class citizens and are exposed via a new class py::dtype.
 3. Structured dtypes can be registered using the PYBIND11_NUMPY_DTYPE() macro. Special array constructors accepting dtype objects were also added.

 One potential caveat involving this change: format descriptor strings should now be accessed via format_descriptor::format() (however, for compatibility purposes, the old syntax format_descriptor::value will still work for non-structured data types). #308.
 4. Further improvements to support structured dtypes throughout the system. #472, #474, #459, #453, #452, and #505.
5. Fast access operators. #497.

6. Constructors for arrays whose storage is owned by another object. #440.

7. Added constructors for `array` and `array_t` explicitly accepting shape and strides; if strides are not provided, they are deduced assuming C-contiguity. Also added simplified constructors for 1-dimensional case.

8. Added buffer/NumPy support for `char[N]` and `std::array<char, N>` types.

9. Added `memoryview` wrapper type which is constructible from `buffer_info`.

- Eigen: many additional conversions and support for non-contiguous arrays/slices. #427, #315, #316, #312, and #267

- Incompatible changes in `class_<...>::class_`:

 1. Declarations of types that provide access via the buffer protocol must now include the `py::buffer_protocol()` annotation as an argument to the `class_` constructor.

 2. Declarations of types that require a custom metaclass (i.e. all classes which include static properties via commands such as `def_readwrite_static()`) must now include the `py::metaclass()` annotation as an argument to the `class_` constructor.

 These two changes were necessary to make type definitions in pybind11 future-proof, and to support PyPy via its cpyext mechanism. #527.

 3. This version of pybind11 uses a redesigned mechanism for instantiating trampoline classes that are used to override virtual methods from within Python. This led to the following user-visible syntax change: instead of

     ```cpp
     py::class_<TrampolineClass>("MyClass")
     .alias< MyClass>()
     ....
     ```

 write

     ```cpp
     py::class_<MyClass, TrampolineClass>("MyClass")
     ....
     ```

 Importantly, both the original and the trampoline class are now specified as an arguments (in arbitrary order) to the `py::class_` template, and the `alias<..>()` call is gone. The new scheme has zero overhead in cases when Python doesn’t override any functions of the underlying C++ class. rev. 86d825.

- Added `eval` and `eval_file` functions for evaluating expressions and statements from a string or file. rev. 0d3fc3.

- pybind11 can now create types with a modifiable dictionary. #437 and #444.

- Support for translation of arbitrary C++ exceptions to Python counterparts. #296 and #273.

- Report full backtraces through mixed C++/Python code, better reporting for import errors, fixed GIL management in exception processing. #537, #494, rev. e72d95, and rev. 099d6e.

- Support for bit-level operations, comparisons, and serialization of C++ enumerations. #503, #508, #380, #309. #311.

- The `class_` constructor now accepts its template arguments in any order. #385.

- Attribute and item accessors now have a more complete interface which makes it possible to chain attributes as in `obj.attr("a")[key].attr("b") .attr("method") (1, 2, 3)`. #425.

- Major redesign of the default and conversion constructors in `pytypes.h`. #464.
• Added built-in support for `std::shared_ptr` holder type. It is no longer necessary to include a declaration of
 the form `PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>)` (though continuing to do so won’t
 cause an error). #454.

• New `py::overload_cast` casting operator to select among multiple possible overloads of a function. An ex-
 ample:

```cpp
py::class_<Pet>(m, "Pet")
  .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
  .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the...
      →pet's name");
```

This feature only works on C++14-capable compilers. #541.

• C++ types are automatically cast to Python types, e.g. when assigning them as an attribute. For instance, the
 following is now legal:

```cpp
py::module m = /* ... */
  m.attr("constant") = 123;
```

(Previously, a `py::cast` call was necessary to avoid a compilation error.) #551.

• Redesigned pytest-based test suite. #321.

• Instance tracking to detect reference leaks in test suite. #324

• `pybind11` can now distinguish between multiple different instances that are located at the same memory address,
 but which have different types. #329.

• Improved logic in move return value policy. #510, #297.

• Generalized unpacking API to permit calling Python functions from C++ using notation such as `foo(a1, a2,
 *args, "ka"_a=1, "kb"_a=2, **kwargs)`.

• `py::print()` function whose behavior matches that of the native Python `print()` function. #372.

• Added `py::dict` keyword constructor:

  ```cpp
  auto d = dict("number"_a=42, "name"_a="World");
  ```

• Added `py::str::format()` method and `_s` literal:

  ```cpp
  py::str s = "1 + 2 = {}"_s.format(3);
  ```

• Added `py::repr()` function which is equivalent to Python’s built-in `repr()`.

• Improved construction and destruction logic for holder types. It is now possible to reference instances with smart
 pointer holder types without constructing the holder if desired. The `PYBIND11_DECLARE_HOLDER_TYPE` macro
 now accepts an optional second parameter to indicate whether the holder type uses intrusive reference counting.
 #533 and #561.

• Mapping a stateless C++ function to Python and back is now “for free” (i.e. no extra indirections or argument
 conversion overheads). rev. 954b79.

• Bindings for `std::valarray<T>`. #545.

• Improved support for C++17 capable compilers. #562.

• Bindings for `std::optional<T>`. #475, #476, #479, #499, and #501.

• `stl_bind.h`: general improvements and support for `std::map` and `std::unordered_map`. #490, #282, #235.

• The `std::tuple`, `std::pair`, `std::list`, and `std::vector` type casters now accept any Python sequence
 type as input. rev. 107285.

• Improved CMake Python detection on multi-architecture Linux. #532.

• Infrastructure to selectively disable or enable parts of the automatically generated docstrings. #486.
- `reference` and `reference_internal` are now the default return value properties for static and non-static properties, respectively. #473. (the previous defaults were automatic). #473.
- Support for `std::unique_ptr` with non-default deleters or no deleter at all (`py::nodelete`). #384.
- Deprecated `handle::call()` method. The new syntax to call Python functions is simply `handle()`. It can also be invoked explicitly via `handle::operator<X>()`, where X is an optional return value policy.
- Print more informative error messages when `make_tuple()` or `cast()` fail. #262.
- Creation of holder types for classes deriving from `std::enable_shared_from_this<>` now also works for `const` values. #260.
- `make_iterator()` improvements for better compatibility with various types (now uses prefix increment operator); it now also accepts iterators with different begin/end types as long as they are equality comparable. #247.
- `arg()` now accepts a wider range of argument types for default values. #244.
- Support `keep_alive` where the nurse object may be `None`. #341.
- Added constructors for `str` and `bytes` from zero-terminated char pointers, and from char pointers and length. Added constructors for `str` from `bytes` and for `bytes` from `str`, which will perform UTF-8 decoding/encoding as required.
- Many other improvements of library internals without user-visible changes

1.27 1.8.1 (July 12, 2016)

- Fixed a rare but potentially very severe issue when the garbage collector ran during pybind11 type creation.

1.28 1.8.0 (June 14, 2016)

- Redesigned CMake build system which exports a convenient `pybind11_add_module` function to parent projects.
- `std::vector<>` type bindings analogous to Boost.Python’s `indexing_suite`
- Transparent conversion of sparse and dense Eigen matrices and vectors (`eigen.h`)
- Added an `ExtraFlags` template argument to the NumPy `array_t<>` wrapper to disable an enforced cast that may lose precision, e.g. to create overloads for different precisions and complex vs real-valued matrices.
- Prevent implicit conversion of floating point values to integral types in function arguments
- Fixed incorrect default return value policy for functions returning a shared pointer
- Don’t allow registering a type via `class_` twice
- Don’t allow casting a `None` value into a C++ lvalue reference
- Fixed a crash in `enum_::operator==` that was triggered by the `help()` command
- Improved detection of whether or not custom C++ types can be copy/move-constructed
- Extended `str` type to also work with `bytes` instances
- Added a "name".a user defined string literal that is equivalent to `py::arg("name")`.
- When specifying function arguments via `py::arg`, the test that verifies the number of arguments now runs at compile time.
- Added `[[noretum]]` attribute to `pybind11_fail()` to quench some compiler warnings
• List function arguments in exception text when the dispatch code cannot find a matching overload
• Added `PYBIND11_OVERLOAD_NAME` and `PYBIND11_OVERLOAD PURE_NAME` macros which can be used to over-
ride virtual methods whose name differs in C++ and Python (e.g. `__call__` and `operator()`)
• Various minor `iterator` and `make_iterator()` improvements
• Transparently support `__bool__` on Python 2.x and Python 3.x
• Fixed issue with destructor of unpickled object not being called
• Minor CMake build system improvements on Windows
• New `pybind11::args` and `pybind11::kwargs` types to create functions which take an arbitrary number of
arguments and keyword arguments
• New syntax to call a Python function from C++ using `*args` and `*kwargs`
• The functions `def_property_*` now correctly process docstring arguments (these formerly caused a segmen-
tation fault)
• Many `mkdoc.py` improvements (enumerations, template arguments, `DOC()` macro accepts more arguments)
• Cygwin support
• Documentation improvements (pickling support, `keep_alive`, macro usage)

1.29 1.7 (April 30, 2016)

• Added a new `move` return value policy that triggers C++11 move semantics. The automatic return value policy
falls back to this case whenever a rvalue reference is encountered
• Significantly more general GIL state routines that are used instead of Python’s troublesome
`PyGILState_Ensure` and `PyGILState_Release` API
• Redesign of opaque types that drastically simplifies their usage
• Extended ability to pass values of type `[const] void`
• `keep_alive` fix: don’t fail when there is no patient
• `functional.h`: acquire the GIL before calling a Python function
• Added Python RAII type wrappers `none` and `iterable`
• Added `*args` and `*kwargs` pass-through parameters to `pybind11::get_include()` function
• Iterator improvements and fixes
• Documentation on return value policies and opaque types improved

1.30 1.6 (April 30, 2016)

• Skipped due to upload to PyPI gone wrong and inability to recover (https://github.com/pypa/
packaging-problems/issues/74)
1.31 1.5 (April 21, 2016)

- For polymorphic types, use RTTI to try to return the closest type registered with pybind11
- Pickling support for serializing and unserializing C++ instances to a byte stream in Python
- Added a convenience routine `make_iterator()` which turns a range indicated by a pair of C++ iterators into a iterable Python object
- Added `len()` and a variadic `make_tuple()` function
- Addressed a rare issue that could confuse the current virtual function dispatcher and another that could lead to crashes in multi-threaded applications
- Added a `get_include()` function to the Python module that returns the path of the directory containing the installed pybind11 header files
- Documentation improvements: import issues, symbol visibility, pickling, limitations
- Added casting support for `std::reference_wrapper<>`

1.32 1.4 (April 7, 2016)

- Transparent type conversion for `std::wstring` and `wchar_t`
- Allow passing `nullptr`-valued strings
- Transparent passing of `void *` pointers using capsules
- Transparent support for returning values wrapped in `std::unique_ptr<>`
- Improved docstring generation for compatibility with Sphinx
- Nicer debug error message when default parameter construction fails
- Support for “opaque” types that bypass the transparent conversion layer for STL containers
- Redesigned type casting interface to avoid ambiguities that could occasionally cause compiler errors
- Redesigned property implementation; fixes crashes due to an unfortunate default return value policy
- Anaconda package generation support

1.33 1.3 (March 8, 2016)

- Added support for the Intel C++ compiler (v15+)
- Added support for the STL unordered set/map data structures
- Added support for the STL linked list data structure
- NumPy-style broadcasting support in `pybind11::vectorize`
- `pybind11` now displays more verbose error messages when `arg::operator=()` fails
- `pybind11` internal data structures now live in a version-dependent namespace to avoid ABI issues
- Many, many bugfixes involving corner cases and advanced usage
1.34 1.2 (February 7, 2016)

- Optional: efficient generation of function signatures at compile time using C++14
- Switched to a simpler and more general way of dealing with function default arguments. Unused keyword arguments in function calls are now detected and cause errors as expected
- New `keep_alive` call policy analogous to Boost.Python's `with_custodian_and_ward`
- New `pybind11::base<>` attribute to indicate a subclass relationship
- Improved interface for RAII type wrappers in `pytypes.h`
- Use RAII type wrappers consistently within `pybind11` itself. This fixes various potential refcount leaks when exceptions occur
- Added new `bytes` RAII type wrapper (maps to `string` in Python 2.7)
- Made handle and related RAII classes const correct, using them more consistently everywhere now
- Got rid of the ugly `__pybind11__` attributes on the Python side—they are now stored in a C++ hash table that is not visible in Python
- Fixed refcount leaks involving NumPy arrays and bound functions
- Vastly improved handling of shared/smart pointers
- Removed an unnecessary copy operation in `pybind11::vectorize`
- Fixed naming clashes when both `pybind11` and NumPy headers are included
- Added conversions for additional exception types
- Documentation improvements (using multiple extension modules, smart pointers, other minor clarifications)
- Unified infrastructure for parsing variadic arguments in `class_` and `cpp_function`
- Fixed license text (was: ZLIB, should have been: 3-clause BSD)
- Python 3.2 compatibility
- Fixed remaining issues when accessing types in another plugin module
- Added enum comparison and casting methods
- Improved SFINAE-based detection of whether types are copy-constructible
- Eliminated many warnings about unused variables and the use of `offsetof()`
- Support for `std::array<>` conversions

1.35 1.1 (December 7, 2015)

- Documentation improvements (GIL, wrapping functions, casting, fixed many typos)
- Generalized conversion of integer types
- Improved support for casting function objects
- Improved support for `std::shared_ptr<>` conversions
- Initial support for `std::set<>` conversions
- Fixed type resolution issue for types defined in a separate plugin module
- CMake build system improvements
• Factored out generic functionality to non-templated code (smaller code size)
• Added a code size / compile time benchmark vs Boost.Python
• Added an appveyor CI script

1.36 1.0 (October 15, 2015)

• Initial release
A companion guide to the Changelog. While the changelog briefly lists all of the new features, improvements and bug fixes, this upgrade guide focuses only the subset which directly impacts your experience when upgrading to a new version. But it goes into more detail. This includes things like deprecated APIs and their replacements, build system changes, general code modernization and other useful information.

2.1 v2.9

- Any usage of the recently added `py::make_simple_namespace` should be converted to using `py::module_::import("types").attr("SimpleNamespace")` instead.
- The use of `_` in custom type casters can now be replaced with the more readable `const_name` instead. The old `_` shortcut has been retained unless it is being used as a macro (like for gettext).

2.2 v2.7

Before v2.7, `py::str` can hold `PyUnicodeObject` or `PyBytesObject`, and `py::isinstance<str>()` is true for both `py::str` and `py::bytes`. Starting with v2.7, `py::str` exclusively holds `PyUnicodeObject` (#2409), and `py::isinstance<str>()` is true only for `py::str`. To help in the transition of user code, the `PYBIND11_STR_LEGACY_PERMISSIVE` macro is provided as an escape hatch to go back to the legacy behavior. This macro will be removed in future releases. Two types of required fixes are expected to be common:

- Accidental use of `py::str` instead of `py::bytes`, masked by the legacy behavior. These are probably very easy to fix, by changing from `py::str` to `py::bytes`.
- Reliance on `py::isinstance<str>(obj)` being true for `py::bytes`. This is likely to be easy to fix in most cases by adding `|| py::isinstance<bytes>(obj)`, but a fix may be more involved, e.g. if `py::isinstance<T>` appears in a template. Such situations will require careful review and custom fixes.

2.3 v2.6

Usage of the `PYBIND11_OVERRIDE*` macros and `get_overload` function should be replaced by `PYBIND11_OVERRIDEX*` and `get_override`. In the future, the old macros may be deprecated and removed.

`py::module` has been renamed `py::module_`, but a backward compatible typedef has been included. This change was to avoid a language change in C++20 that requires unqualified `module` not be placed at the start of a logical line. Qualified usage is unaffected and the typedef will remain unless the C++ language rules change again.

The public constructors of `py::module_` have been deprecated. Use `PYBIND11_MODULE` or `module_::create_extension_module` instead.
An error is now thrown when __init_ is forgotten on subclasses. This was incorrect before, but was not checked. Add a call to __init_ if it is missing.

A py__type_error is now thrown when casting to a subclass (like py__bytes from py__object) if the conversion is not valid. Make a valid conversion instead.

The undocumented h.get_type() method has been deprecated and replaced by py__type_::of(h).

 Enums now have a __str__ method pre-defined; if you want to override it, the simplest fix is to add the new py__prepend() tag when defining "__str__".

If __eq__ defined but not __hash__, __hash_ is now set to None, as in normal CPython. You should add __hash__ if you intended the class to be hashable, possibly using the new py__hash shortcut.

The constructors for py__array now always take signed integers for size, for consistency. This may lead to compiler warnings on some systems. Cast to py__ssize_t instead of std__size_t.

The tools/clang submodule and tools/mkdoc_py have been moved to a standalone package, pybind11_mkdoc. If you were using those tools, please use them via a pip install from the new location.

The pybind11 package on PyPI no longer fills the wheel “headers” slot - if you were using the headers from this slot, they are available by requesting the global extra, that is, pip install "pybind11[global]". (Most users will be unaffected, as the pybind11/include location is reported by python -m pybind11 --includes and pybind11. get_include() is still correct and has not changed since 2.5).

2.3.1 CMake support:

The minimum required version of CMake is now 3.4. Several details of the CMake support have been deprecated; warnings will be shown if you need to change something. The changes are:

- \PYBIND11_CPP_STANDARD=<platform_flag> is deprecated, please use \CMAKE_CXX_STANDARD=<number> instead, or any other valid CMake CXX or CUDA standard selection method, like target_compile_features.

- If you do not request a standard, pybind11 targets will compile with the compiler default, but not less than C++11, instead of forcing C++14 always. If you depend on the old behavior, please use set(CMAKE_CXX_STANDARD 14 CACHE STRING "") instead.

- Direct pybind11::module usage should always be accompanied by at least set(CMAKE_CXX_VISIBILITY_PRESET hidden) or similar - it used to try to manually force this compiler flag (but not correctly on all compilers or with CUDA).

- pybind11_add_module’s SYSTEM argument is deprecated and does nothing; linking now behaves like other imported libraries consistently in both config and submodule mode, and behaves like a SYSTEM library by default.

- If PYTHON_EXECUTABLE is not set, virtual environments (venv, virtualenv, and conda) are prioritized over the standard search (similar to the new FindPython mode).

In addition, the following changes may be of interest:

- \CMAKE_INTERPROCEDURAL_OPTIMIZATION will be respected by pybind11_add_module if set instead of linking to pybind11::lto or pybind11::thin_lto.

- Using find_package(Python COMPONENTS Interpreter Development) before pybind11 will cause pybind11 to use the new Python mechanisms instead of its own custom search, based on a patched version of classic FindPythonInterp / FindPythonLibs. In the future, this may become the default. A recent (3.15+ or 3.18.2+) version of CMake is recommended.
2.4 v2.5

The Python package now includes the headers as data in the package itself, as well as in the “headers” wheel slot. pybind11 --includes and pybind11.get_include() report the new location, which is always correct regardless of how pybind11 was installed, making the old user= argument meaningless. If you are not using the function to get the location already, you are encouraged to switch to the package location.

2.5 v2.2

2.5.1 Deprecation of the PYBIND11_PLUGIN macro

PYBIND11_MODULE is now the preferred way to create module entry points. The old macro emits a compile-time deprecation warning.

```cpp
// old
PYBIND11_PLUGIN(example) {
    py::module m("example", "documentation string");

    m.def("add", [](int a, int b) { return a + b; });

    return m.ptr();
}

// new
PYBIND11_MODULE(example, m) {
    m.doc() = "documentation string"; // optional

    m.def("add", [](int a, int b) { return a + b; });
}
```

2.5.2 New API for defining custom constructors and pickling functions

The old placement-new custom constructors have been deprecated. The new approach uses py::init() and factory functions to greatly improve type safety.

Placement-new can be called accidentally with an incompatible type (without any compiler errors or warnings), or it can initialize the same object multiple times if not careful with the Python-side __init__ calls. The new-style custom constructors prevent such mistakes. See Custom constructors for details.

```cpp
// old -- deprecated (runtime warning shown only in debug mode)
py::class<Foo>(m, "Foo")
    .def("__init__", [](Foo &self, ...) {
        new (&self) Foo(...); // uses placement-new
    });

// new
py::class<Foo>(m, "Foo")
    .def(py::init([](...) { // Note: no `self` argument
        return new Foo(...); // return by raw pointer
        // or: return std::make_unique<Foo>(...); // return by holder
```
// or: return Foo(...); // return by value (move constructor)
});

Mirroring the custom constructor changes, py::pickle() is now the preferred way to get and set object state. See Pickling support for details.

// old -- deprecated (runtime warning shown only in debug mode)
py::class_<Foo>(m, "Foo")
...
 .def("__getstate__", [](const Foo &self) {
 return py::make_tuple(self.value1(), self.value2(), ...);
 })
 .def("__setstate__", [](Foo &self, py::tuple t) {
 new (&self) Foo(t[0].cast<std::string>(), ...);
 });

// new
py::class_<Foo>(m, "Foo")
...
 .def(py::pickle(
 [](const Foo &self) { // __getstate__
 return py::make_tuple(self.value1(), self.value2(), ...); // unchanged
 },
 [](py::tuple t) { // __setstate__, note: no `self` argument
 return new Foo(t[0].cast<std::string>(), ...);
 // or: return std::make_unique<Foo>(...); // return by holder
 // or: return Foo(...); // return by value (move constructor)
 }
));

For both the constructors and pickling, warnings are shown at module initialization time (on import, not when the functions are called). They’re only visible when compiled in debug mode. Sample warning:

pybind11-bound class 'mymodule.Foo' is using an old-style placement-new '__init__' which has been deprecated. See the upgrade guide in pybind11's docs.

2.5.3 Stricter enforcement of hidden symbol visibility for pybind11 modules

pybind11 now tries to actively enforce hidden symbol visibility for modules. If you’re using either one of pybind11’s CMake or Python build systems (the two example repositories) and you haven’t been exporting any symbols, there’s nothing to be concerned about. All the changes have been done transparently in the background. If you were building manually or relied on specific default visibility, read on.

Setting default symbol visibility to hidden has always been recommended for pybind11 (see How can I create smaller binaries?). On Linux and macOS, hidden symbol visibility (in conjunction with the strip utility) yields much smaller module binaries. CPython’s extension docs also recommend hiding symbols by default, with the goal of avoiding symbol name clashes between modules. Starting with v2.2, pybind11 enforces this more strictly: (1) by declaring all symbols inside the pybind11 namespace as hidden and (2) by including the -fvisibility=hidden flag on Linux and macOS (only for extension modules, not for embedding the interpreter).

The namespace-scope hidden visibility is done automatically in pybind11’s headers and it’s generally transparent to users. It ensures that:
• Modules compiled with different pybind11 versions don’t clash with each other.

• Some new features, like py::module_local bindings, can work as intended.

The -fvisibility=hidden flag applies the same visibility to user bindings outside of the pybind11 namespace. It’s now set automatic by pybind11’s CMake and Python build systems, but this needs to be done manually by users of other build systems. Adding this flag:

• Minimizes the chances of symbol conflicts between modules. E.g. if two unrelated modules were statically linked to different (ABI-incompatible) versions of the same third-party library, a symbol clash would be likely (and would end with unpredictable results).

• Produces smaller binaries on Linux and macOS, as pointed out previously.

Within pybind11’s CMake build system, pybind11_add_module has always been setting the -fvisibility=hidden flag in release mode. From now on, it’s being applied unconditionally, even in debug mode and it can no longer be opted out of with the NO_EXTRAS option. The pybind11::module target now also adds this flag to its interface. The pybind11::embed target is unchanged.

The most significant change here is for the pybind11::module target. If you were previously relying on default visibility, i.e. if your Python module was doubling as a shared library with dependents, you’ll need to either export symbols manually (recommended for cross-platform libraries) or factor out the shared library (and have the Python module link to it like the other dependents). As a temporary workaround, you can also restore default visibility using the CMake code below, but this is not recommended in the long run:

```cmake
target_link_libraries(mymodule PRIVATE pybind11::module)
add_library(restore_default_visibility INTERFACE)
target_compile_options(restore_default_visibility INTERFACE -fvisibility=default)
target_link_libraries(mymodule PRIVATE restore_default_visibility)
```

2.5.4 Local STL container bindings

Previous pybind11 versions could only bind types globally – all pybind11 modules, even unrelated ones, would have access to the same exported types. However, this would also result in a conflict if two modules exported the same C++ type, which is especially problematic for very common types, e.g. `std::vector<int>`. Module-local class bindings were added to resolve this (see that section for a complete usage guide).

py::class_ still defaults to global bindings (because these types are usually unique across modules), however in order to avoid clashes of opaque types, py::bind_vector and py::bind_map will now bind STL containers as py::module_local if their elements are: builtins (int, float, etc.), not bound using py::class_, or bound as py::module_local. For example, this change allows multiple modules to bind `std::vector<int>` without causing conflicts. See Binding STL containers for more details.

When upgrading to this version, if you have multiple modules which depend on a single global binding of an STL container, note that all modules can still accept foreign py::module_local types in the direction of Python-to-C++. The locality only affects the C++-to-Python direction. If this is needed in multiple modules, you’ll need to either:

• Add a copy of the same STL binding to all of the modules which need it.

• Restore the global status of that single binding by marking it py::module_local(false).

The latter is an easy workaround, but in the long run it would be best to localize all common type bindings in order to avoid conflicts with third-party modules.
2.5.5 Negative strides for Python buffer objects and numpy arrays

Support for negative strides required changing the integer type from unsigned to signed in the interfaces of py::buffer_info and py::array. If you have compiler warnings enabled, you may notice some new conversion warnings after upgrading. These can be resolved using static_cast.

2.5.6 Deprecation of some py::object APIs

To compare py::object instances by pointer, you should now use obj1.is(obj2) which is equivalent to obj1 == obj2 in Python. Previously, pybind11 used operator== for this (obj1 == obj2), but that could be confusing and is now deprecated (so that it can eventually be replaced with proper rich object comparison in a future release).

For classes which inherit from py::object, borrowed and stolen were previously available as protected constructor tags. Now the types should be used directly instead: borrowed_t{} and stolen_t{} (#771).

2.5.7 Stricter compile-time error checking

Some error checks have been moved from run time to compile time. Notably, automatic conversion of std::shared_ptr<T> is not possible when T is not directly registered with py::class_<T> (e.g. std::shared_ptr<int> or std::shared_ptr<std::vector<T>> are not automatically convertible). Attempting to bind a function with such arguments now results in a compile-time error instead of waiting to fail at run time.

py::init<...>() constructor definitions are also stricter and now prevent bindings which could cause unexpected behavior:

```c++
struct Example {
    Example(int &);  
};

py::class_<Example>(m, "Example")
    .def(py::init<int &>());  // OK, exact match
    // .def(py::init<int>());  // compile-time error, mismatch
```

A non-const lvalue reference is not allowed to bind to an rvalue. However, note that a constructor taking const T & can still be registered using py::init<T>() because a const lvalue reference can bind to an rvalue.

2.6 v2.1

2.6.1 Minimum compiler versions are enforced at compile time

The minimums also apply to v2.0 but the check is now explicit and a compile-time error is raised if the compiler does not meet the requirements:

- GCC >= 4.8
- clang >= 3.3 (appleclang >= 5.0)
- MSVC >= 2015u3
- Intel C++ >= 15.0
2.6.2 The py::metaclass attribute is not required for static properties

Binding classes with static properties is now possible by default. The zero-parameter version of py::metaclass() is deprecated. However, a new one-parameter py::metaclass(python_type) version was added for rare cases when a custom metaclass is needed to override pybind11’s default.

```cpp
// old -- emits a deprecation warning
py::class_<Foo>(m, "Foo", py::metaclass())
  .def_property_readonly_static("foo", ...);

// new -- static properties work without the attribute
py::class_<Foo>(m, "Foo")
  .def_property_readonly_static("foo", ...);

// new -- advanced feature, override pybind11's default metaclass
py::class_<Bar>(m, "Bar", py::metaclass(custom_python_type))
  ...
```

2.7 v2.0

2.7.1 Breaking changes in py::class_

These changes were necessary to make type definitions in pybind11 future-proof, to support PyPy via its cpyext mechanism (#527), and to improve efficiency (rev. 86d825).

1. Declarations of types that provide access via the buffer protocol must now include the py::buffer_protocol() annotation as an argument to the py::class_ constructor.

```cpp
py::class_<Matrix>("Matrix", py::buffer_protocol())
  .def(py::init<...>())
  .def_buffer(...);
```

2. Classes which include static properties (e.g. def_readwrite_static()) must now include the py::metaclass() attribute. Note: this requirement has since been removed in v2.1. If you're upgrading from 1.x, it's recommended to skip directly to v2.1 or newer.

3. This version of pybind11 uses a redesigned mechanism for instantiating trampoline classes that are used to override virtual methods from within Python. This led to the following user-visible syntax change:

```cpp
// old v1.x syntax
py::class_<TrampolineClass>("MyClass")
  .alias<MyClass>()
  ...

// new v2.x syntax
py::class_<MyClass, TrampolineClass>("MyClass")
  ...
```

Importantly, both the original and the trampoline class are now specified as arguments to the py::class_ template, and the alias<>() call is gone. The new scheme has zero overhead in cases when Python doesn’t override any functions of the underlying C++ class. rev. 86d825.

The class type must be the first template argument given to py::class_ while the trampoline can be mixed in arbitrary order with other arguments (see the following section).
2.7.2 Deprecation of the `py::base<T>()` attribute

`py::base<T>()` was deprecated in favor of specifying T as a template argument to `py::class_`. This new syntax also supports multiple inheritance. Note that, while the type being exported must be the first argument in the `py::class_<Class, ...>` template, the order of the following types (bases, holder and/or trampoline) is not important.

```cpp
// old v1.x
py::class_<Derived>("Derived", py::base<Base>());

// new v2.x
py::class_<Derived, Base>("Derived");

// new -- multiple inheritance
py::class_<Derived, Base1, Base2>("Derived");

// new -- apart from 'Derived' the argument order can be arbitrary
py::class_<Derived, Base1, Holder, Base2, Trampoline>("Derived");
```

2.7.3 Out-of-the-box support for `std::shared_ptr`

The relevant type caster is now built in, so it’s no longer necessary to include a declaration of the form:

```cpp
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>)
```

Continuing to do so won’t cause an error or even a deprecation warning, but it’s completely redundant.

2.7.4 Deprecation of a few `py::object` APIs

All of the old-style calls emit deprecation warnings.

<table>
<thead>
<tr>
<th>Old syntax</th>
<th>New syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj.call(args...)</td>
<td>obj(args...)</td>
</tr>
<tr>
<td>obj.str()</td>
<td>py::str(obj)</td>
</tr>
<tr>
<td>auto l = py::list(obj); l.check()</td>
<td>py::isinstancepy::list(obj)</td>
</tr>
<tr>
<td>py::object(ptr, true)</td>
<td>py::reinterpret_borrowpy::object(ptr)</td>
</tr>
<tr>
<td>py::object(ptr, false)</td>
<td>py::reinterpret_stealpy::object(ptr)</td>
</tr>
<tr>
<td>if (obj.attr("foo"))</td>
<td>if (py::hasattr(obj, "foo"))</td>
</tr>
<tr>
<td>if (obj["bar"])</td>
<td>if (obj.contains("bar"))</td>
</tr>
</tbody>
</table>
There are several ways to get the pybind11 source, which lives at pybind/pybind11 on GitHub. The pybind11 developers recommend one of the first three ways listed here, submodule, PyPI, or conda-forge, for obtaining pybind11.

3.1 Include as a submodule

When you are working on a project in Git, you can use the pybind11 repository as a submodule. From your git repository, use:

```bash
  git submodule add -b stable ../pybind/pybind11 extern/pybind11
  git submodule update --init
```

This assumes you are placing your dependencies in `extern/`, and that you are using GitHub; if you are not using GitHub, use the full https or ssh URL instead of the relative URL `../pybind/pybind11` above. Some other servers also require the `.git` extension (GitHub does not).

From here, you can now include `extern/pybind11/include`, or you can use the various integration tools (see **Build systems**) pybind11 provides directly from the local folder.

3.2 Include with PyPI

You can download the sources and CMake files as a Python package from PyPI using Pip. Just use:

```bash
  pip install pybind11
```

This will provide pybind11 in a standard Python package format. If you want pybind11 available directly in your environment root, you can use:

```bash
  pip install "pybind11[global]"
```

This is not recommended if you are installing with your system Python, as it will add files to `/usr/local/include/pybind11` and `/usr/local/share/cmake/pybind11`, so unless that is what you want, it is recommended only for use in virtual environments or your `pyproject.toml` file (see **Build systems**).
3.3 Include with conda-forge

You can use pybind11 with conda packaging via conda-forge:

```
conda install -c conda-forge pybind11
```

3.4 Include with vcpkg

You can download and install pybind11 using the Microsoft vcpkg dependency manager:

```
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
vcpkg install pybind11
```

The pybind11 port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please create an issue or pull request on the vcpkg repository.

3.5 Global install with brew

The brew package manager (Homebrew on macOS, or Linuxbrew on Linux) has a pybind11 package. To install:

```
brew install pybind11
```

3.6 Other options

Other locations you can find pybind11 are listed here; these are maintained by various packagers and the community.
This section demonstrates the basic features of pybind11. Before getting started, make sure that development environment is set up to compile the included set of test cases.

4.1 Compiling the test cases

4.1.1 Linux/macOS

On Linux you’ll need to install the **python-dev** or **python3-dev** packages as well as **cmake**. On macOS, the included python version works out of the box, but **cmake** must still be installed.

After installing the prerequisites, run

```bash
mkdir build
cd build
cmake ..
make check -j 4
```

The last line will both compile and run the tests.

4.1.2 Windows

On Windows, only **Visual Studio 2017** and newer are supported.

Note: To use the C++17 in Visual Studio 2017 (MSVC 14.1), pybind11 requires the flag `/permissive-` to be passed to the compiler to enforce standard conformance. When building with Visual Studio 2019, this is not strictly necessary, but still advised.

To compile and run the tests:

```bash
mkdir build
cd build
cmake ..
cmake --build . --config Release --target check
```

This will create a Visual Studio project, compile and run the target, all from the command line.
Note: If all tests fail, make sure that the Python binary and the test cases are compiled for the same processor type and bitness (i.e. either i386 or x86_64). You can specify x86_64 as the target architecture for the generated Visual Studio project using cmake -A x64 ...

See also:

Advanced users who are already familiar with Boost.Python may want to skip the tutorial and look at the test cases in the tests directory, which exercise all features of pybind11.

4.2 Header and namespace conventions

For brevity, all code examples assume that the following two lines are present:

```cpp
#include <pybind11/pybind11.h>
namespace py = pybind11;
```

Some features may require additional headers, but those will be specified as needed.

4.3 Creating bindings for a simple function

Let’s start by creating Python bindings for an extremely simple function, which adds two numbers and returns their result:

```cpp
int add(int i, int j) {
    return i + j;
}
```

For simplicity¹, we’ll put both this function and the binding code into a file named example.cpp with the following contents:

```cpp
#include <pybind11/pybind11.h>

int add(int i, int j) {
    return i + j;
}

PYBIND11_MODULE(example, m) {
    m.doc() = "pybind11 example plugin"; // optional module docstring
    m.def("add", &add, "A function that adds two numbers");
}
```

The PYBIND11_MODULE() macro creates a function that will be called when an import statement is issued from within Python. The module name (example) is given as the first macro argument (it should not be in quotes). The second argument (m) defines a variable of type py::module_ which is the main interface for creating bindings. The method module_::def() generates binding code that exposes the add() function to Python.

¹ In practice, implementation and binding code will generally be located in separate files.
Note: Notice how little code was needed to expose our function to Python: all details regarding the function’s parameters and return value were automatically inferred using template metaprogramming. This overall approach and the used syntax are borrowed from Boost.Python, though the underlying implementation is very different.

pybind11 is a header-only library, hence it is not necessary to link against any special libraries and there are no intermediate (magic) translation steps. On Linux, the above example can be compiled using the following command:

```sh
$ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -o example$(python3-config --extension-suffix)
```

Note: If you used *Include as a submodule* to get the pybind11 source, then use `$(python3-config --includes) -Iextern/pybind11/include` instead of `$python3 -m pybind11 --includes` in the above compilation, as explained in *Building manually*.

For more details on the required compiler flags on Linux and macOS, see *Building manually*. For complete cross-platform compilation instructions, refer to the *Build systems* page.

The `python_example` and `cmake_example` repositories are also a good place to start. They are both complete project examples with cross-platform build systems. The only difference between the two is that `python_example` uses Python’s `setuptools` to build the module, while `cmake_example` uses CMake (which may be preferable for existing C++ projects).

Building the above C++ code will produce a binary module file that can be imported to Python. Assuming that the compiled module is located in the current directory, the following interactive Python session shows how to load and execute the example:

```sh
$ python
Python 3.9.10 (main, Jan 15 2022, 11:48:04)
[Clang 13.0.0 (clang-1300.0.29.3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import example
>>> example.add(1, 2)
3
```

4.4 Keyword arguments

With a simple code modification, it is possible to inform Python about the names of the arguments ("i" and "j" in this case).

```cpp
m.def("add", &add, "A function which adds two numbers",
    py::arg("i").arg("j"));
```

`arg` is one of several special tag classes which can be used to pass metadata into `module_::def()`. With this modified binding code, we can now call the function using keyword arguments, which is a more readable alternative particularly for functions taking many parameters:

```sh
>>> import example
>>> example.add(i=1, j=2)
3L
```
The keyword names also appear in the function signatures within the documentation.

```python
>>> help(example)
....
FUNCTIONS
   add(...)  
       Signature : (i: int, j: int) -> int

   A function which adds two numbers
```

A shorter notation for named arguments is also available:

```python
// regular notation
m.def("add1", &add, py::arg("i"), py::arg("j"));

// shorthand
using namespace pybind11::literals;
m.def("add2", &add, "i"_a, "j"_a);
```

The _a suffix forms a C++11 literal which is equivalent to arg. Note that the literal operator must first be made visible with the directive using namespace pybind11::literals. This does not bring in anything else from the pybind11 namespace except for literals.

4.5 Default arguments

Suppose now that the function to be bound has default arguments, e.g.:

```python
int add(int i = 1, int j = 2) {
    return i + j;
}
```

Unfortunately, pybind11 cannot automatically extract these parameters, since they are not part of the function's type information. However, they are simple to specify using an extension of arg:

```python
m.def("add", &add, "A function which adds two numbers",
      py::arg("i") = 1, py::arg("j") = 2);
```

The default values also appear within the documentation.

```python
>>> help(example)
....
FUNCTIONS
   add(...)  
       Signature : (i: int = 1, j: int = 2) -> int

   A function which adds two numbers
```

The shorthand notation is also available for default arguments:
4.6 Exporting variables

To expose a value from C++, use the \texttt{attr} function to register it in a module as shown below. Built-in types and general objects (more on that later) are automatically converted when assigned as attributes, and can be explicitly converted using the function \texttt{py::cast}.

\begin{verbatim}
PYBIND11_MODULE(example, m) {
 m.attr("the_answer") = 42;
 py::object world = py::cast("World");
 m.attr("what") = world;
}
\end{verbatim}

These are then accessible from Python:

\begin{verbatim}
>>> import example
>>> example.the_answer
42
>>> example.what
'World'
\end{verbatim}

4.7 Supported data types

A large number of data types are supported out of the box and can be used seamlessly as functions arguments, return values or with \texttt{py::cast} in general. For a full overview, see the \textit{Type conversions} section.
5.1 Creating bindings for a custom type

Let’s now look at a more complex example where we’ll create bindings for a custom C++ data structure named Pet. Its definition is given below:

```cpp
struct Pet {
    Pet(const std::string &name) : name(name) { }
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }
    std::string name;
};
```

The binding code for Pet looks as follows:

```cpp
#include <pybind11/pybind11.h>
namespace py = pybind11;

PYBIND11_MODULE(example, m) {
    py::class_<Pet>(m, "Pet")
        .def(py::init<const std::string &>())
        .def("setName", &Pet::setName)
        .def("getName", &Pet::getName);
}
```

`class_` creates bindings for a C++ class or struct-style data structure. `init()` is a convenience function that takes the types of a constructor’s parameters as template arguments and wraps the corresponding constructor (see the Custom constructors section for details). An interactive Python session demonstrating this example is shown below:

```python
% python
>>> import example
>>> p = example.Pet("Molly")
>>> print(p)
<example.Pet object at 0x10cd98060>
>>> p.getName()
'Molly'
>>> p.setName("Charly")
>>> p.getName()
'Charly'
```
See also:
Static member functions can be bound in the same way using `class_::def_static()`.

5.2 Keyword and default arguments

It is possible to specify keyword and default arguments using the syntax discussed in the previous chapter. Refer to the sections *Keyword arguments* and *Default arguments* for details.

5.3 Binding lambda functions

Note how `print(p)` produced a rather useless summary of our data structure in the example above:

```python
>>> print(p)
<example.Pet object at 0x10cd98060>
```

To address this, we could bind a utility function that returns a human-readable summary to the special method slot named `__repr__`. Unfortunately, there is no suitable functionality in the *Pet* data structure, and it would be nice if we did not have to change it. This can easily be accomplished by binding a Lambda function instead:

```python
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def("setName", &Pet::setName)
    .def("getName", &Pet::getName)
    .def("__repr__", [](<Pet &a>) {
        return "<example.Pet named " + a.name + ">");
```

Both stateless\(^1\) and stateful lambda closures are supported by pybind11. With the above change, the same Python code now produces the following output:

```python
>>> print(p)
<example.Pet named 'Molly'>
```

5.4 Instance and static fields

We can also directly expose the `name` field using the `class_::def_readwrite()` method. A similar `class_::def_readonly()` method also exists for `const` fields.

```python
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_readwrite("name", &Pet::name)
    // ... remainder ...
```

This makes it possible to write

\(^1\) Stateless closures are those with an empty pair of brackets `[]` as the capture object.
Now suppose that Pet::name was a private internal variable that can only be accessed via setters and getters.

```cpp
class Pet {
public:
    Pet(const std::string &name) : name(name) {}
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }
private:
    std::string name;
};
```

In this case, the method class_::def_property() (class_::def_property_readonly() for read-only data) can be used to provide a field-like interface within Python that will transparently call the setter and getter functions:

```cpp
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_property("name", &Pet::getName, &Pet::setName)
// ... remainder ...
```

Write only properties can be defined by passing nullptr as the input for the read function.

See also:

Similar functions class_::def_readwrite_static(), class_::def_readonly_static(), class_::def_property_static(), and class_::def_property_readonly_static() are provided for binding static variables and properties. Please also see the section on *Static properties* in the advanced part of the documentation.

5.5 Dynamic attributes

Native Python classes can pick up new attributes dynamically:

```python
>>> class Pet:
...     
...             name = "Molly"
...             
...             p = Pet()
>>> p.name = "Charly"  # overwrite existing
>>> p.age = 2  # dynamically add a new attribute
```

By default, classes exported from C++ do not support this and the only writable attributes are the ones explicitly defined using class_::def_readwrite() or class_::def_property().

```cpp
py::class_<Pet>(m, "Pet")
    .def(py::init<>())
    .def_readwrite("name", &Pet::name);
```

Trying to set any other attribute results in an error.
>>> p = example.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'

To enable dynamic attributes for C++ classes, the `py::dynamic_attr` tag must be added to the `py::class_` constructor:

```cpp
py::class_<Pet>(m, "Pet", py::dynamic_attr())
            .def(py::init<>())
            .def_readwrite("name", &Pet::name);
```

Now everything works as expected:

```python
>>> p = example.Pet()
>>> p.name = "Charly"  # OK, overwrite value in C++
>>> p.age = 2      # OK, dynamically add a new attribute
>>> p.__dict__
{'age': 2}
```

Note that there is a small runtime cost for a class with dynamic attributes. Not only because of the addition of a `_dict_`, but also because of more expensive garbage collection tracking which must be activated to resolve possible circular references. Native Python classes incur this same cost by default, so this is not anything to worry about. By default, pybind11 classes are more efficient than native Python classes. Enabling dynamic attributes just brings them on par.

5.6 Inheritance and automatic downcasting

Suppose now that the example consists of two data structures with an inheritance relationship:

```cpp
struct Pet
{
    Pet(const std::string &name) : name(name) {}  
    std::string name;
};

struct Dog : Pet
{
    Dog(const std::string &name) : Pet(name) {}  
    std::string bark() const { return "woof!"; }
};
```

There are two different ways of indicating a hierarchical relationship to pybind11: the first specifies the C++ base class as an extra template parameter of the `class_`:

```cpp
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_readwrite("name", &Pet::name);

// Method 1: template parameter:
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);
```
Alternatively, we can also assign a name to the previously bound Pet class object and reference it when binding the Dog class:

```cpp
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
   .def_readwrite("name", &Pet::name);
```

// Method 2: pass parent class_ object:
```cpp
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
   .def(py::init<const std::string &>())
   .def("bark", &Dog::bark);
```

Functionality-wise, both approaches are equivalent. Afterwards, instances will expose fields and methods of both types:

```python
>>> p = example.Dog("Molly")
```
```python
>>> p.name
'Molly'
```
```python
>>> p.bark()
'woof!'
```

The C++ classes defined above are regular non-polymorphic types with an inheritance relationship. This is reflected in Python:

```cpp
// Return a base pointer to a derived instance
m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); }); 
```

```python
>>> p = example.pet_store()
```
```python
>>> type(p) # 'Dog' instance behind 'Pet' pointer
Pet    # no pointer downcasting for regular non-polymorphic types
```
```python
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'
```

The function returned a Dog instance, but because it’s a non-polymorphic type behind a base pointer, Python only sees a Pet. In C++, a type is only considered polymorphic if it has at least one virtual function and pybind11 will automatically recognize this:

```cpp
struct PolymorphicPet {
   virtual ~PolymorphicPet() = default;
};
```
```cpp
struct PolymorphicDog : PolymorphicPet {
   std::string bark() const { return "woof!"; }
};
```

// Same binding code
```cpp
py::class_<PolymorphicPet>(m, "PolymorphicPet");
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
   .def(py::init<>())
   .def("bark", &PolymorphicDog::bark);
```

// Again, return a base pointer to a derived instance
```cpp
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
```

5.6. Inheritance and automatic downcasting
Given a pointer to a polymorphic base, pybind11 performs automatic downcasting to the actual derived type. Note that this goes beyond the usual situation in C++: we don’t just get access to the virtual functions of the base, we get the concrete derived type including functions and attributes that the base type may not even be aware of.

See also:

For more information about polymorphic behavior see *Overriding virtual functions in Python*.

5.7 Overloaded methods

Sometimes there are several overloaded C++ methods with the same name taking different kinds of input arguments:

```cpp
struct Pet {
    Pet(const std::string &name, int age) : name(name), age(age) { }

    void set(int age_) { age = age_; }
    void set(const std::string &name_) { name = name_; }

    std::string name;
    int age;
};
```

Attempting to bind `Pet::set` will cause an error since the compiler does not know which method the user intended to select. We can disambiguate by casting them to function pointers. Binding multiple functions to the same Python name automatically creates a chain of function overloads that will be tried in sequence.

```python
py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &, int>())
    .def("set", static_cast<void>(Pet::*)(&Pet::set), "Set the pet's age")
    .def("set", static_cast<void>(Pet::*)(&Pet::set), "Set the pet's name");
```

The overload signatures are also visible in the method’s docstring:

```python
>>> help(example.Pet)
class Pet(__builtins__.object)
    Methods defined here:

    __init__(...
        Signature : (Pet, str, int) -> NoneType
    
    set(...
        1. Signature : (Pet, int) -> NoneType
    
    Set the pet's age

(continues on next page)
If you have a C++14 compatible compiler\(^2\), you can use an alternative syntax to cast the overloaded function:

```cpp
class_<Pet>(m, "Pet")
 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
```

Here, `py::overload_cast` only requires the parameter types to be specified. The return type and class are deduced. This avoids the additional noise of `void (Pet::*)()` as seen in the raw cast. If a function is overloaded based on constness, the `py::const_` tag should be used:

```cpp
struct Widget {
 int foo(int x, float y);
 int foo(int x, float y) const;
};
```

```cpp
class_<Widget>(m, "Widget")
 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
```

If you prefer the `py::overload_cast` syntax but have a C++11 compatible compiler only, you can use `py::detail::overload_cast_impl` with an additional set of parentheses:

```cpp
template<typename... Args>
using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;
```

```cpp
class_<Pet>(m, "Pet")
 .def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
 .def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");
```

---

**5.8 Enumerations and internal types**

Let’s now suppose that the example class contains internal types like enumerations, e.g.:

```cpp
struct Pet {
 enum Kind {
 Dog = 0,
 Cat
 };

 struct Attributes {
 float age = 0;
 }
```

---

\(^2\) A compiler which supports the `-std=c++14` flag.
The binding code for this example looks as follows:

```cpp
py::class_<Pet> pet(m, "Pet");

pet.def(py::init<const std::string &, Pet::Kind>())
 .def_readwrite("name", &Pet::name)
 .def_readwrite("type", &Pet::type)
 .def_readwrite("attr", &Pet::attr);

py::enum_<Pet::Kind>(pet, "Kind")
 .value("Dog", Pet::Kind::Dog)
 .value("Cat", Pet::Kind::Cat)
 .export_values();

py::class_<Pet::Attributes> attributes(pet, "Attributes")
 .def(py::init<>())
 .def_readwrite("age", &Pet::Attributes::age);
```

To ensure that the nested types Kind and Attributes are created within the scope of Pet, the pet class_ instance must be supplied to the enum_ and class_ constructor. The enum_::export_values() function exports the enum entries into the parent scope, which should be skipped for newer C++11-style strongly typed enums.

```python
>>> p = Pet("Lucy", Pet.Cat)
>>> p.type
Kind.Cat
>>> int(p.type)
1L
```

The entries defined by the enumeration type are exposed in the __members__ property:

```python
>>> Pet.Kind.__members__
{'Dog': Kind.Dog, 'Cat': Kind.Cat}
```

The name property returns the name of the enum value as a unicode string.

**Note:** It is also possible to use `str(enum)`, however these accomplish different goals. The following shows how these two approaches differ.

```python
>>> p = Pet("Lucy", Pet.Cat)
>>> pet_type = p.type
>>> pet_type
Pet.Cat
>>> str(pet_type)

(continues on next page)
Note: When the special tag `py::arithmetic()` is specified to the `enum_` constructor, pybind11 creates an enumeration that also supports rudimentary arithmetic and bit-level operations like comparisons, and, or, xor, negation, etc.

```cpp
py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
...
```

By default, these are omitted to conserve space.
6.1 Building with setuptools

For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay has kindly provided an example project which shows how to set up everything, including automatic generation of documentation using Sphinx. Please refer to the [python_example] repository.

A helper file is provided with pybind11 that can simplify usage with setuptools.

To use pybind11 inside your setup.py, you have to have some system to ensure that pybind11 is installed when you build your package. There are four possible ways to do this, and pybind11 supports all four: You can ask all users to install pybind11 beforehand (bad), you can use PEP 518 requirements (Pip 10+ required) (good, but very new and requires Pip 10), Classic setup_requires (discouraged by Python packagers now that PEP 518 is available, but it still works everywhere), or you can Copy manually (always works but you have to manually sync your copy to get updates).

An example of a setup.py using pybind11’s helpers:

```python
from glob import glob
from setuptools import setup
from pybind11.setup_helpers import Pybind11Extension

ext_modules = [
    Pybind11Extension("python_example",
        sorted(glob("src/*.cpp")),  # Sort source files for reproducibility
    ),
]

setup(..., ext_modules=ext_modules)
```

If you want to do an automatic search for the highest supported C++ standard, that is supported via a build_ext command override; it will only affect Pybind11Extensions:

```python
from glob import glob
from setuptools import setup
from pybind11.setup_helpers import Pybind11Extension, build_ext

ext_modules = [
    Pybind11Extension("python_example",
        sorted(glob("src/*.cpp")),
    ),
]

setup(..., ext_modules=ext_modules)
```
(continues on next page)
setup(..., cmdclass={"build_ext": build_ext}, ext_modules=ext_modules)

If you have single-file extension modules that are directly stored in the Python source tree (foo.cpp in the same directory as where a foo.py would be located), you can also generate Pybind11Extensions using setup_helpers.intree_extensions: intree_extensions(["path/to/foo.cpp", ...]) returns a list of Pybind11Extensions which can be passed to ext_modules, possibly after further customizing their attributes (libraries, include_dirs, etc.). By doing so, a foo.*.so extension module will be generated and made available upon installation.

intree_extension will automatically detect if you are using a src-style layout (as long as no namespace packages are involved), but you can also explicitly pass package_dir to it (as in setuptools.setup).

Since pybind11 does not require NumPy when building, a light-weight replacement for NumPy’s parallel compilation distutils tool is included. Use it like this:

```
from pybind11.setup_helpers import ParallelCompile

# Optional multithreaded build
ParallelCompile("NPY_NUM_BUILD_JOBS").install()

setup(...)
```

The argument is the name of an environment variable to control the number of threads, such as NPY_NUM_BUILD_JOBS (as used by NumPy), though you can set something different if you want; CMAKE_BUILD_PARALLEL_LEVEL is another choice a user might expect. You can also pass default=N to set the default number of threads (0 will take the number of threads available) and max=N, the maximum number of threads; if you have a large extension you may want set this to a memory dependent number.

If you are developing rapidly and have a lot of C++ files, you may want to avoid rebuilding files that have not changed. For simple cases were you are using pip install -e and do not have local headers, you can skip the rebuild if an object file is newer than its source (headers are not checked!) with the following:

```
from pybind11.setup_helpers import ParallelCompile, naive_recompile

ParallelCompile("NPY_NUM_BUILD_JOBS", needs_recompile=naive_recompile).install()
```

If you have a more complex build, you can implement a smarter function and pass it to needs_recompile, or you can use [Ccachet][cache] instead. CXX="cache g++" pip install -e would be the way to use it with GCC, for example. Unlike the simple solution, this even works even when not compiling in editable mode, but it does require Ccache to be installed.

Keep in mind that Pip will not even attempt to rebuild if it thinks it has already built a copy of your code, which it deduces from the version number. One way to avoid this is to use [setuptools_scm], which will generate a version number that includes the number of commits since your last tag and a hash for a dirty directory. Another way to force a rebuild is purge your cache or use Pip’s --no-cache-dir option.

6.1. Building with setuptools
6.1.1 PEP 518 requirements (Pip 10+ required)

If you use PEP 518’s pyproject.toml file, you can ensure that pybind11 is available during the compilation of your project. When this file exists, Pip will make a new virtual environment, download just the packages listed here in requires=, and build a wheel (binary Python package). It will then throw away the environment, and install your wheel.

Your pyproject.toml file will likely look something like this:

```toml
[build-system]
requires = ["setuptools>=42", "wheel", "pybind11~=2.6.1"]
build-backend = "setuptools.build_meta"
```

Note: The main drawback to this method is that a PEP 517 compliant build tool, such as Pip 10+, is required for this approach to work; older versions of Pip completely ignore this file. If you distribute binaries (called wheels in Python) using something like cibuildwheel, remember that setup.py and pyproject.toml are not even contained in the wheel, so this high Pip requirement is only for source builds, and will not affect users of your binary wheels. If you are building SDists and wheels, then pypa-build is the recommended official tool.

6.1.2 Classic setup_requires

If you want to support old versions of Pip with the classic setup_requires=["pybind11"] keyword argument to setup, which triggers a two-phase setup.py run, then you will need to use something like this to ensure the first pass works (which has not yet installed the setup_requires packages, since it can’t install something it does not know about):

```python
try:
    from pybind11.setup_helpers import Pybind11Extension
except ImportError:
    from setuptools import Extension as Pybind11Extension
```

It doesn’t matter that the Extension class is not the enhanced subclass for the first pass run; and the second pass will have the setup_requires requirements.

This is obviously more of a hack than the PEP 518 method, but it supports ancient versions of Pip.

6.1.3 Copy manually

You can also copy setup_helpers.py directly to your project; it was designed to be usable standalone, like the old example setup.py. You can set include_pybind11=False to skip including the pybind11 package headers, so you can use it with git submodules and a specific git version. If you use this, you will need to import from a local file in setup.py and ensure the helper file is part of your MANIFEST.

Closely related, if you include pybind11 as a subproject, you can run the setup_helpers.py inplace. If loaded correctly, this should even pick up the correct include for pybind11, though you can turn it off as shown above if you want to input it manually.

Suggested usage if you have pybind11 as a submodule in extern/pybind11:

```python
DIR = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(DIR, "extern", "pybind11"))
```

(continues on next page)
from pybind11.setup_helpers import Pybind11Extension # noqa: E402

del sys.path[-1]

Changed in version 2.6: Added setup_helpers file.

6.2 Building with cppimport

[cppimport] is a small Python import hook that determines whether there is a C++ source file whose name matches the requested module. If there is, the file is compiled as a Python extension using pybind11 and placed in the same folder as the C++ source file. Python is then able to find the module and load it.

6.3 Building with CMake

For C++ codebases that have an existing CMake-based build system, a Python extension module can be created with just a few lines of code:

```cmake
cmake_minimum_required(VERSION 3.4...3.18)
project(example LANGUAGES CXX)
add_subdirectory(pybind11)
pybind11_add_module(example example.cpp)
```

This assumes that the pybind11 repository is located in a subdirectory named pybind11 and that the code is located in a file named example.cpp. The CMake command `add_subdirectory` will import the pybind11 project which provides the `pybind11_add_module` function. It will take care of all the details needed to build a Python extension module on any platform.

A working sample project, including a way to invoke CMake from setup.py for PyPI integration, can be found in the [cmake_example] repository.

Changed in version 2.6: CMake 3.4+ is required.

Further information can be found at CMake helpers.

6.3.1 pybind11_add_module

To ease the creation of Python extension modules, pybind11 provides a CMake function with the following signature:

```cmake
pybind11_add_module(<name> [MODULE | SHARED] [EXCLUDE_FROM_ALL]
                        [NO_EXTRAS] [THIN_LTO] [OPT_SIZE] source1 [source2 ...])
```

This function behaves very much like CMake's builtin `add_library` (in fact, it's a wrapper function around that command). It will add a library target called `<name>` to be built from the listed source files. In addition, it will take care of all the Python-specific compiler and linker flags as well as the OS- and Python-version-specific file extension. The produced target `<name>` can be further manipulated with regular CMake commands.

`MODULE` or `SHARED` may be given to specify the type of library. If no type is given, `MODULE` is used by default which ensures the creation of a Python-exclusive module. Specifying `SHARED` will create a more traditional dynamic library which can also be linked from elsewhere. `EXCLUDE_FROM_ALL` removes this target from the default build (see CMake docs for details).
Since pybind11 is a template library, pybind11_add_module adds compiler flags to ensure high quality code generation without bloat arising from long symbol names and duplication of code in different translation units. It sets default visibility to hidden, which is required for some pybind11 features and functionality when attempting to load multiple pybind11 modules compiled under different pybind11 versions. It also adds additional flags enabling LTO (Link Time Optimization) and strip unneeded symbols. See the FAQ entry for a more detailed explanation. These latter optimizations are never applied in Debug mode. If NO_EXTRAS is given, they will always be disabled, even in Release mode. However, this will result in code bloat and is generally not recommended.

As stated above, LTO is enabled by default. Some newer compilers also support different flavors of LTO such as ThinLTO. Setting THIN_LTO will cause the function to prefer this flavor if available. The function falls back to regular LTO if -flto=thin is not available. If CMAKE_INTERPROCEDURAL_OPTIMIZATION is set (either ON or OFF), then that will be respected instead of the built-in flag search.

Note: If you want to set the property form on targets or the CMAKE_INTERPROCEDURAL_OPTIMIZATION_<CONFIG> versions of this, you should still use set(CMAKE_INTERPROCEDURAL_OPTIMIZATION OFF) (otherwise a no-op) to disable pybind11’s ipo flags.

The OPT_SIZE flag enables size-based optimization equivalent to the standard /Os or -Os compiler flags and the MinSizeRel build type, which avoid optimizations that that can substantially increase the size of the resulting binary. This flag is particularly useful in projects that are split into performance-critical parts and associated bindings. In this case, we can compile the project in release mode (and hence, optimize performance globally), and specify OPT_SIZE for the binding target, where size might be the main concern as performance is often less critical here. A ~25% size reduction has been observed in practice. This flag only changes the optimization behavior at a per-target level and takes precedence over the global CMake build type (Release, RelWithDebInfo) except for Debug builds, where optimizations remain disabled.

6.3.2 Configuration variables

By default, pybind11 will compile modules with the compiler default or the minimum standard required by pybind11, whichever is higher. You can set the standard explicitly with CMAKE_CXX_STANDARD:

```bash
set(CMAKE_CXX_STANDARD 14 CACHE STRING "C++ version selection") # or 11, 14, 17, 20
set(CMAKE_CXX_STANDARD_REQUIRED ON) # optional, ensure standard is supported
set(CMAKE_CXX_EXTENSIONS OFF) # optional, keep compiler extensions off
```

The variables can also be set when calling CMake from the command line using the -D<variable>=<value> flag. You can also manually set CXX_STANDARD on a target or use target_compile_features on your targets - anything that CMake supports.

Classic Python support: The target Python version can be selected by setting PYBIND11_PYTHON_VERSION or an exact Python installation can be specified with PYTHON_EXECUTABLE. For example:

```bash
cmake -DPYBIND11_PYTHON_VERSION=3.6 ..
```

Another method:
```
cmake -DPYTHON_EXECUTABLE=/path/to/python ..
```

This often is a good way to get the current Python, works in environments:
```
cmake -DPYTHON_EXECUTABLE=$(python3 -c "import sys; print(sys.executable)") ..
```
6.3.3 find_package vs. add_subdirectory

For CMake-based projects that don’t include the pybind11 repository internally, an external installation can be detected through `find_package(pybind11)`. See the Config file docstring for details of relevant CMake variables.

```cmake
find_package(pybind11 REQUIRED)
pybind11_add_module(example example.cpp)
```

Note that `find_package(pybind11)` will only work correctly if pybind11 has been correctly installed on the system, e.g. after downloading or cloning the pybind11 repository:

```bash
# Classic CMake
cd pybind11
mkdir build
cd build
cmake ..
make install

# CMake 3.15+
cd pybind11
cmake -S . -B build
cmake --build build -j 2 # Build on 2 cores
cmake --install build
```

Once detected, the aforementioned `pybind11_add_module` can be employed as before. The function usage and configuration variables are identical no matter if pybind11 is added as a subdirectory or found as an installed package. You can refer to the same [cmake_example] repository for a full sample project – just swap out `add_subdirectory` for `find_package`.

6.3.4 FindPython mode

CMake 3.12+ (3.15+ recommended, 3.18.2+ ideal) added a new module called FindPython that had a highly improved search algorithm and modern targets and tools. If you use FindPython, pybind11 will detect this and use the existing targets instead:

```cmake
find_package(Python 3.6 COMPONENTS Interpreter Development REQUIRED)
find_package(pybind11 CONFIG REQUIRED)
# or add_subdirectory(pybind11)
pybind11_add_module(example example.cpp)
```

You can also use the targets (as listed below) with FindPython. If you define `PYBIND11_FINDPYTHON`, pybind11 will perform the FindPython step for you (mostly useful when building pybind11’s own tests, or as a way to change search algorithms from the CMake invocation, with `-DPYBIND11_FINDPYTHON=ON`).
Warning: If you use FindPython to multi-target Python versions, use the individual targets listed below, and avoid targets that directly include Python parts.

There are many ways to hint or force a discovery of a specific Python installation, setting `Python_ROOT_DIR` may be the most common one (though with virtualenv/venv support, and Conda support, this tends to find the correct Python version more often than the old system did).

Warning: When the Python libraries (i.e. `libpythonXX.a` and `libpythonXX.so` on Unix) are not available, as is the case on a manylinux image, the Development component will not be resolved by FindPython. When not using the embedding functionality, CMake 3.18+ allows you to specify Development.Module instead of Development to resolve this issue.

New in version 2.6.

6.3.5 Advanced: interface library targets

Pybind11 supports modern CMake usage patterns with a set of interface targets, available in all modes. The targets provided are:

- **pybind11::headers** Just the pybind11 headers and minimum compile requirements
- **pybind11::pybind11** Python headers + pybind11::headers
- **pybind11::python_link_helper** Just the “linking” part of pybind11::module
- **pybind11::module** Everything for extension modules - pybind11::pybind11 + Python::Module (FindPython CMake 3.15+) or pybind11::python_link_helper
- **pybind11::embed** Everything for embedding the Python interpreter - pybind11::pybind11 + Python::Python (FindPython) or Python libs
- **pybind11::lto / pybind11::thin_lto** An alternative to `INTERPROCEDURAL_OPTIMIZATION` for adding link-time optimization.
- **pybind11::windows_extras /bigobj and /mp for MSVC.**
- **pybind11::opt_size /Os for MSVC, -Os for other compilers.** Does nothing for debug builds.

Two helper functions are also provided:

- **pybind11_strip(target)** Strips a target (uses `CMAKE_STRIP` after the target is built)
- **pybind11_extension(target)** Sets the correct extension (with SOABI) for a target.

You can use these targets to build complex applications. For example, the `add_python_module` function is identical to:

```cmake
cmake_minimum_required(VERSION 3.4)
project(example LANGUAGES CXX)

find_package(pybind11 REQUIRED)  # or add_subdirectory(pybind11)

add_library(example MODULE main.cpp)

target_link_libraries(example PRIVATE pybind11::module pybind11::lto pybind11::windows_˓
˓→extras)
```

(continues on next page)
Instead of setting properties, you can set `CMAKE_*` variables to initialize these correctly.

Warning: Since pybind11 is a metatemplate library, it is crucial that certain compiler flags are provided to ensure high quality code generation. In contrast to the `pybind11_add_module()` command, the CMake interface provides a composable set of targets to ensure that you retain flexibility. It can be especially important to provide or set these properties; the FAQ contains an explanation on why these are needed.

New in version 2.6.

6.3.6 Advanced: NOPYTHON mode

If you want complete control, you can set `PYBIND11_NOPYTHON` to completely disable Python integration (this also happens if you run `FindPython2` and `FindPython3` without running `FindPython`). This gives you complete freedom to integrate into an existing system (like Scikit-Build's PythonExtensions). `pybind11_add_module` and `pybind11_extension` will be unavailable, and the targets will be missing any Python specific behavior.

New in version 2.6.

6.3.7 Embedding the Python interpreter

In addition to extension modules, pybind11 also supports embedding Python into a C++ executable or library. In CMake, simply link with the `pybind11::embed` target. It provides everything needed to get the interpreter running. The Python headers and libraries are attached to the target. Unlike `pybind11::module`, there is no need to manually set any additional properties here. For more information about usage in C++, see *Embedding the interpreter*.
6.4 Building manually

pybind11 is a header-only library, hence it is not necessary to link against any special libraries and there are no intermediate (magic) translation steps.

On Linux, you can compile an example such as the one given in Creating bindings for a simple function using the following command:

```
$ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -o example$($(python3-config --extension-suffix))
```

The python3 -m pybind11 --includes command fetches the include paths for both pybind11 and Python headers. This assumes that pybind11 has been installed using pip or conda. If it hasn’t, you can also manually specify `-I <path-to-pybind11>/include` together with the Python includes path `python3-config --includes`.

On macOS: the build command is almost the same but it also requires passing the `-undefined dynamic_lookup` flag so as to ignore missing symbols when building the module:

```
$ c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup $(python3 -m pybind11 --includes) example.cpp -o example$($(python3-config --extension-suffix))
```

In general, it is advisable to include several additional build parameters that can considerably reduce the size of the created binary. Refer to section Building with CMake for a detailed example of a suitable cross-platform CMake-based build system that works on all platforms including Windows.

Note: On Linux and macOS, it’s better to (intentionally) not link against `libpython`. The symbols will be resolved when the extension library is loaded into a Python binary. This is preferable because you might have several different installations of a given Python version (e.g. the system-provided Python, and one that ships with a piece of commercial software). In this way, the plugin will work with both versions, instead of possibly importing a second Python library into a process that already contains one (which will lead to a segfault).

6.5 Building with Bazel

You can build with the Bazel build system using the `pybind11_bazel` repository.

6.6 Generating binding code automatically

The Binder project is a tool for automatic generation of pybind11 binding code by introspecting existing C++ codebases using LLVM/Clang. See the [binder] documentation for details.

[AutoWIG] is a Python library that wraps automatically compiled libraries into high-level languages. It parses C++ code using LLVM/Clang technologies and generates the wrappers using the Mako templating engine. The approach is automatic, extensible, and applies to very complex C++ libraries, composed of thousands of classes or incorporating modern meta-programming constructs.

[robotpy-build] is a pure python, cross platform build tool that aims to simplify creation of python wheels for pybind11 projects, and provide cross-project dependency management. Additionally, it is able to autogenerate customizable pybind11-based wrappers by parsing C++ header files.
Before proceeding with this section, make sure that you are already familiar with the basics of binding functions and classes, as explained in *First steps* and *Object-oriented code*. The following guide is applicable to both free and member functions, i.e. *methods* in Python.

7.1 Return value policies

Python and C++ use fundamentally different ways of managing the memory and lifetime of objects managed by them. This can lead to issues when creating bindings for functions that return a non-trivial type. Just by looking at the type information, it is not clear whether Python should take charge of the returned value and eventually free its resources, or if this is handled on the C++ side. For this reason, pybind11 provides several *return value policy* annotations that can be passed to the `module::def()` and `class::def()` functions. The default policy is `return_value_policy::automatic`.

Return value policies are tricky, and it’s very important to get them right. Just to illustrate what can go wrong, consider the following simple example:

```cpp
/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
...

/* Binding code */
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
```

What’s going on here? When `get_data()` is called from Python, the return value (a native C++ type) must be wrapped to turn it into a usable Python type. In this case, the default return value policy (`return_value_policy::automatic`) causes pybind11 to assume ownership of the static `_data` instance.

When Python’s garbage collector eventually deletes the Python wrapper, pybind11 will also attempt to delete the C++ instance (via `operator delete()`) due to the implied ownership. At this point, the entire application will come crashing down, though errors could also be more subtle and involve silent data corruption.

In the above example, the policy `return_value_policy::reference` should have been specified so that the global `data` instance is only referenced without any implied transfer of ownership, i.e.:

```cpp
m.def("get_data", &get_data, py::return_value_policy::reference);
```

On the other hand, this is not the right policy for many other situations, where ignoring ownership could lead to resource leaks. As a developer using pybind11, it’s important to be familiar with the different return value policies, including which situation calls for which one of them. The following table provides an overview of available policies:
<table>
<thead>
<tr>
<th>Return value policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return_value_policy::take_ownership</td>
<td>Reference an existing object (i.e. do not create a new copy) and take ownership. Python will call the destructor and delete operator when the object’s reference count reaches zero. Undefined behavior ensues when the C++ side does the same, or when the data was not dynamically allocated.</td>
</tr>
<tr>
<td>return_value_policy::copy</td>
<td>Create a new copy of the returned object, which will be owned by Python. This policy is comparably safe because the lifetimes of the two instances are decoupled.</td>
</tr>
<tr>
<td>return_value_policy::move</td>
<td>Use std::move to move the return value contents into a new instance that will be owned by Python. This policy is comparably safe because the lifetimes of the two instances (move source and destination) are decoupled.</td>
</tr>
<tr>
<td>return_value_policy::reference</td>
<td>Reference an existing object, but do not take ownership. The C++ side is responsible for managing the object's lifetime and deallocating it when it is no longer used. Warning: undefined behavior will ensue when the C++ side deletes an object that is still referenced and used by Python.</td>
</tr>
<tr>
<td>return_value_policy::reference_internal</td>
<td>Indicates that the lifetime of the return value is tied to the lifetime of a parent object, namely the implicit this, or self argument of the called method or property. Internally, this policy works just like return_value_policy::reference but additionally applies a keep_alive<0, 1> call policy (described in the next section) that prevents the parent object from being garbage collected as long as the return value is referenced by Python. This is the default policy for property getters created via def_property, def_readwrite, etc.</td>
</tr>
<tr>
<td>return_value_policy::automatic</td>
<td>This policy falls back to the policy return_value_policy::take_ownership when the return value is a pointer. Otherwise, it uses return_value_policy::move or return_value_policy::copy for rvalue and lvalue references, respectively. See above for a description of what all of these different policies do. This is the default policy for py::class_::wrapped types.</td>
</tr>
<tr>
<td>return_value_policy::automatic_reference</td>
<td>As above, but use policy return_value_policy::reference when the return value is a pointer. This is the default conversion policy for function arguments when calling Python functions manually from C++ code (i.e. via handle::operator()) and the casters in pybind11/stl.h. You probably won't need to use this explicitly.</td>
</tr>
</tbody>
</table>

Return value policies can also be applied to properties:
Technically, the code above applies the policy to both the getter and the setter function, however, the setter doesn’t really care about return value policies which makes this a convenient terse syntax. Alternatively, targeted arguments can be passed through the `cpp_function` constructor:

```cpp
class_<MyClass>(m, "MyClass")
    .def_property("data",
                 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
                 py::cpp_function(&MyClass::setData));
```

Warning: Code with invalid return value policies might access uninitialized memory or free data structures multiple times, which can lead to hard-to-debug non-determinism and segmentation faults, hence it is worth spending the time to understand all the different options in the table above.

Note: One important aspect of the above policies is that they only apply to instances which pybind11 has not seen before, in which case the policy clarifies essential questions about the return value’s lifetime and ownership. When pybind11 knows the instance already (as identified by its type and address in memory), it will return the existing Python object wrapper rather than creating a new copy.

Note: The next section on Additional call policies discusses call policies that can be specified in addition to a return value policy from the list above. Call policies indicate reference relationships that can involve both return values and parameters of functions.

Note: As an alternative to elaborate call policies and lifetime management logic, consider using smart pointers (see the section on Custom smart pointers for details). Smart pointers can tell whether an object is still referenced from C++ or Python, which generally eliminates the kinds of inconsistencies that can lead to crashes or undefined behavior. For functions returning smart pointers, it is not necessary to specify a return value policy.
7.2 Additional call policies

In addition to the above return value policies, further call policies can be specified to indicate dependencies between parameters or ensure a certain state for the function call.

7.2.1 Keep alive

In general, this policy is required when the C++ object is any kind of container and another object is being added to the container. keep_alive<Nurse, Patient> indicates that the argument with index Patient should be kept alive at least until the argument with index Nurse is freed by the garbage collector. Argument indices start at one, while zero refers to the return value. For methods, index 1 refers to the implicit this pointer, while regular arguments begin at index 2. Arbitrarily many call policies can be specified. When a Nurse with value None is detected at runtime, the call policy does nothing.

When the nurse is not a pybind11-registered type, the implementation internally relies on the ability to create a weak reference to the nurse object. When the nurse object is not a pybind11-registered type and does not support weak references, an exception will be thrown.

If you use an incorrect argument index, you will get a RuntimeError saying Could not activate keep_alive!. You should review the indices you're using.

Consider the following example: here, the binding code for a list append operation ties the lifetime of the newly added element to the underlying container:

```python
py::class_<List>(m, "List")
    .def("append", &List::append, py::keep_alive<1, 2>());
```

For consistency, the argument indexing is identical for constructors. Index 1 still refers to the implicit this pointer, i.e. the object which is being constructed. Index 0 refers to the return type which is presumed to be void when a constructor is viewed like a function. The following example ties the lifetime of the constructor element to the constructed object:

```python
py::class_<Nurse>(m, "Nurse")
    .def(py::init<Patient &>(), py::keep_alive<1, 2>());
```

Note: keep_alive is analogous to the with_custodian_and_ward (if Nurse, Patient != 0) and with_custodian_and_ward_postcall (if Nurse/Patient == 0) policies from Boost.Python.

7.2.2 Call guard

The call_guard<T> policy allows any scope guard type T to be placed around the function call. For example, this definition:

```python
m.def("foo", foo, py::call_guard<T>());
```

is equivalent to the following pseudocode:

```python
m.def("foo", [](args...) {
    T scope_guard;
    return foo(args...); // forwarded arguments
});
```
The only requirement is that T is default-constructible, but otherwise any scope guard will work. This is very useful in combination with `gil_scoped_release`. See `Global Interpreter Lock (GIL)`.

Multiple guards can also be specified as `py::call_guard<T1, T2, T3...>`. The constructor order is left to right and destruction happens in reverse.

See also:
The file `tests/test_call_policies.cpp` contains a complete example that demonstrates using `keep_alive` and `call_guard` in more detail.

7.3 Python objects as arguments

`pybind11` exposes all major Python types using thin C++ wrapper classes. These wrapper classes can also be used as parameters of functions in bindings, which makes it possible to directly work with native Python types on the C++ side. For instance, the following statement iterates over a Python `dict`:

```cpp
void print_dict(const py::dict& dict) {
    /* Easily interact with Python types */
    for (auto item : dict)
        std::cout << "key=" << std::string(py::str(item.first)) << ", "
                  << "value=" << std::string(py::str(item.second)) << std::endl;
}
```

It can be exported:

```cpp
m.def("print_dict", &print_dict);
```

And used in Python as usual:

```python
>>> print_dict({'foo': 123, 'bar': 'hello'})
key=foo, value=123
key=bar, value=hello
```

For more information on using Python objects in C++, see `Python C++ interface`.

7.4 Accepting *args and **kwargs

Python provides a useful mechanism to define functions that accept arbitrary numbers of arguments and keyword arguments:

```python
def generic(*args, **kwargs):
    ...
    # do something with args and kwargs
```

Such functions can also be created using `pybind11`:

```cpp
void generic(py::args args, const py::kwargs& kwargs) {
    /// .. do something with args
    if (kwargs)
        /// .. do something with kwargs
}
```

(continues on next page)
/// Binding code
m.def("generic", &generic);

The class py::args derives from py::tuple and py::kwargs derives from py::dict.
You may also use just one or the other, and may combine these with other arguments. Note, however, that py::kwargs
must always be the last argument of the function, and py::args implies that any further arguments are keyword-only
(see Keyword-only arguments).

Please refer to the other examples for details on how to iterate over these, and on how to cast their entries into C++
objects. A demonstration is also available in tests/test_kwargs_and_defaults.cpp.

Note: When combining *args or **kwargs with Keyword arguments you should not include py::arg tags for the
py::args and py::kwargs arguments.

7.5 Default arguments revisited

The section on Default arguments previously discussed basic usage of default arguments using pybind11. One note-
worthy aspect of their implementation is that default arguments are converted to Python objects right at declaration
time. Consider the following example:

```cpp
py::class_<MyClass>("MyClass")
  .def("myFunction", py::arg("arg") = SomeType(123));
```

In this case, pybind11 must already be set up to deal with values of the type SomeType (via a prior instantiation of
py::class_<SomeType>), or an exception will be thrown.

Another aspect worth highlighting is that the “preview” of the default argument in the function signature is generated
using the object’s __repr__ method. If not available, the signature may not be very helpful, e.g.:

```plain
FUNCTIONS
... |
  | myFunction(...)  
  | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType  
... 
```

The first way of addressing this is by defining SomeType.__repr__. Alternatively, it is possible to specify the human-
readable preview of the default argument manually using the arg_v notation:

```cpp
py::class_<MyClass>("MyClass")
  .def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)");
```

Sometimes it may be necessary to pass a null pointer value as a default argument. In this case, remember to cast it to
the underlying type in question, like so:

```cpp
py::class_<MyClass>("MyClass")
  .def("myFunction", py::arg("arg") = static_cast<SomeType*>(nullptr));
```
7.6 Keyword-only arguments

Python implements keyword-only arguments by specifying an unnamed * argument in a function definition:

```python
def f(a, *, b):
    # a can be positional or via keyword; b must be via keyword
    pass
```

```python
f(a=1, b=2)  # good
f(b=2, a=1)  # good
f(1, b=2)   # good
f(1, 2)     # TypeError: f() takes 1 positional argument but 2 were given
```

Pybind11 provides a `py::kw_only` object that allows you to implement the same behaviour by specifying the object between positional and keyword-only argument annotations when registering the function:

```python
m.def("f", [](int a, int b) {
    /* ... */
},
    py::arg("a"), py::kw_only(), py::arg("b"));
```

New in version 2.6.

A `py::args` argument implies that any following arguments are keyword-only, as if `py::kw_only()` had been specified in the same relative location of the argument list as the `py::args` argument. The `py::kw_only()` may be included to be explicit about this, but is not required.

Changed in version 2.9: This can now be combined with `py::args`. Before, `py::args` could only occur at the end of the argument list, or immediately before a `py::kwargs` argument at the end.

7.7 Positional-only arguments

Python 3.8 introduced a new positional-only argument syntax, using / in the function definition (note that this has been a convention for CPython positional arguments, such as in `pow()`, since Python 2). You can do the same thing in any version of Python using `py::pos_only()`:

```python
m.def("f", [](int a, int b) {
    /* ... */
},
    py::arg("a"), py::pos_only(), py::arg("b"));
```

You now cannot give argument `a` by keyword. This can be combined with keyword-only arguments, as well.

New in version 2.6.

7.8 Non-converting arguments

Certain argument types may support conversion from one type to another. Some examples of conversions are:

- *Implicit conversions* declared using `py::implicitly_convertible<A,B>()`
- Calling a method accepting a double with an integer argument
- Calling a `std::complex<float>` argument with a non-complex python type (for example, with a float). (Requires the optional `pybind11/complex.h` header).
- Calling a function taking an Eigen matrix reference with a numpy array of the wrong type or of an incompatible data layout. (Requires the optional `pybind11/eigen.h` header).
This behaviour is sometimes undesirable: the binding code may prefer to raise an error rather than convert the argument. This behaviour can be obtained through `py::arg` by calling the `.noconvert()` method of the `py::arg` object, such as:

```cpp
m.def("floats_only", [] (double f) { return 0.5 * f; }, py::arg("f").noconvert());
m.def("floats_preferred", [] (double f) { return 0.5 * f; }, py::arg("f"));
```

Attempting the call the second function (the one without `.noconvert()`) with an integer will succeed, but attempting to call the `.noconvert()` version will fail with a `TypeError`:

```python
>>> floats_preferred(4)
2.0
>>> floats_only(4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
  1. (f: float) -> float
Invoked with: 4
```

You may, of course, combine this with the `__` shorthand notation (see *Keyword arguments*) and/or *Default arguments*. It is also permitted to omit the argument name by using the `py::arg()` constructor without an argument name, i.e. by specifying `py::arg().noconvert()`.

Note: When specifying `py::arg` options it is necessary to provide the same number of options as the bound function has arguments. Thus if you want to enable no-convert behaviour for just one of several arguments, you will need to specify a `py::arg()` annotation for each argument with the no-convert argument modified to `py::arg().noconvert()`.

7.9 Allow/Prohibiting None arguments

When a C++ type registered with `py::class_` is passed as an argument to a function taking the instance as pointer or shared holder (e.g. `shared_ptr` or a custom, copyable holder as described in *Custom smart pointers*), pybind allows `None` to be passed from Python which results in calling the C++ function with `nullptr` (or an empty holder) for the argument.

To explicitly enable or disable this behaviour, using the `.none` method of the `py::arg` object:

```python
py::class_<Dog>(m, "Dog").def(py::init<>());
py::class_<Cat>(m, "Cat").def(py::init<>());
m.def("bark", [] (Dog *dog) -> std::string {
    if (dog) return "woof!"; /* Called with a Dog instance */
    else return "(no dog)"; /* Called with None, dog == nullptr */
}, py::arg("dog").none(true));
m.def("meow", [] (Cat *cat) -> std::string {
    // Can't be called with None argument
    return "meow";
}, py::arg("cat").none(false));
```

With the above, the Python call `bark(None)` will return the string "(no dog)", while attempting to call `meow(None)` will raise a `TypeError`:

7.9. Allow/Prohibiting None arguments

69
>>> from animals import Dog, Cat, bark, meow
>>> bark(Dog())
'woof!
>>> meow(Cat())
'meow'
>>> bark(None)
'(no dog)'
>>> meow(None)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: meow(): incompatible function arguments. The following argument types are supported:
 1. (cat: animals.Cat) -> str
Invoked with: None

The default behaviour when the tag is unspecified is to allow None.

Note: Even when .none(true) is specified for an argument, None will be converted to a nullptr only for custom and opaque types. Pointers to built-in types (double *, int *, ...) and STL types (std::vector<T> *, ...; if pybind11/stl.h is included) are copied when converted to C++ (see Overview) and will not allow None as argument. To pass optional argument of these copied types consider using std::optional<T>

7.10 Overload resolution order

When a function or method with multiple overloads is called from Python, pybind11 determines which overload to call in two passes. The first pass attempts to call each overload without allowing argument conversion (as if every argument had been specified as py::arg().noconvert() as described above).

If no overload succeeds in the no-conversion first pass, a second pass is attempted in which argument conversion is allowed (except where prohibited via an explicit py::arg().noconvert() attribute in the function definition).

If the second pass also fails a TypeError is raised.

Within each pass, overloads are tried in the order they were registered with pybind11. If the py::prepend() tag is added to the definition, a function can be placed at the beginning of the overload sequence instead, allowing user overloads to proceed built in functions.

What this means in practice is that pybind11 will prefer any overload that does not require conversion of arguments to an overload that does, but otherwise prefers earlier-defined overloads to later-defined ones.

Note: pybind11 does not further prioritize based on the number/pattern of overloaded arguments. That is, pybind11 does not prioritize a function requiring one conversion over one requiring three, but only prioritizes overloads requiring no conversion at all to overloads that require conversion of at least one argument.

New in version 2.6: The py::prepend() tag.
7.11 Binding functions with template parameters

You can bind functions that have template parameters. Here’s a function:

```cpp
template<typename T>
void set(T t);
```

C++ templates cannot be instantiated at runtime, so you cannot bind the non-instantiated function:

```cpp
// BROKEN (this will not compile)
m.def("set", &set);
```

You must bind each instantiated function template separately. You may bind each instantiation with the same name, which will be treated the same as an overloaded function:

```cpp
m.def("set", &set<int>);
m.def("set", &set<std::string>);
```

Sometimes it’s more clear to bind them with separate names, which is also an option:

```cpp
m.def("setInt", &set<int>);
m.def("setString", &set<std::string>);
```
This section presents advanced binding code for classes and it is assumed that you are already familiar with the basics from *Object-oriented code*.

8.1 Overriding virtual functions in Python

Suppose that a C++ class or interface has a virtual function that we’d like to override from within Python (we’ll focus on the class `Animal`; `Dog` is given as a specific example of how one would do this with traditional C++ code).

```cpp
class Animal {
    public:
        virtual ~Animal() { }
        virtual std::string go(int n_times) = 0;
    }

class Dog : public Animal {
    public:
        std::string go(int n_times) override {
            std::string result;
            for (int i=0; i<n_times; ++i)
                result += "woof! ";
            return result;
        }
    }
}
```

Let’s also suppose that we are given a plain function which calls the function `go()` on an arbitrary `Animal` instance.

```cpp
std::string call_go(Animal *animal) {
    return animal->go(3);
}
```

Normally, the binding code for these classes would look as follows:

```cpp
PYBIND11_MODULE(example, m) {
    py::class_<Animal>(m, "Animal")
        .def("go", &Animal::go);
    py::class_<Dog, Animal>(m, "Dog")
        .def(py::init<>());
}
```

(continues on next page)
However, these bindings are impossible to extend: Animal is not constructible, and we clearly require some kind of “trampoline” that redirects virtual calls back to Python.

Defining a new type of Animal from within Python is possible but requires a helper class that is defined as follows:

```cpp
class PyAnimal : public Animal {
public:
    /* Inherit the constructors */
    using Animal::Animal;

    /* Trampoline (need one for each virtual function) */
    std::string go(int n_times) override {
        PYBIND11_OVERRIDE_PURE(
            std::string, /* Return type */
            Animal, /* Parent class */
            go, /* Name of function in C++ (must match Python name) */
            n_times /* Argument(s) */
        );
    }
};
```

The macro `PYBIND11_OVERRIDE_PURE` should be used for pure virtual functions, and `PYBIND11_OVERRIDE` should be used for functions which have a default implementation. There are also two alternate macros `PYBIND11_OVERRIDE_PURE_NAME` and `PYBIND11_OVERRIDE_NAME` which take a string-valued name argument between the `Parent class` and `Name of the function` slots, which defines the name of function in Python. This is required when the C++ and Python versions of the function have different names, e.g. `operator()` vs `__call__`.

The binding code also needs a few minor adaptations (highlighted):

```cpp
PYBIND11_MODULE(example, m) {
    py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
        .def(py::init<>())
        .def("go", &PyAnimal::go);

    py::class_<Dog, Animal>(m, "Dog")
        .def(py::init<>());

    m.def("call_go", &call_go);
}
```

Importantly, pybind11 is made aware of the trampoline helper class by specifying it as an extra template argument to `class_`. (This can also be combined with other template arguments such as a custom holder type; the order of template types does not matter). Following this, we are able to define a constructor as usual.

Bindings should be made against the actual class, not the trampoline helper class.

```cpp
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal"),
    .def(py::init<>())
    .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
```

Note, however, that the above is sufficient for allowing python classes to extend Animal, but not Dog: see Combining virtual functions and inheritance for the necessary steps required to providing proper overriding support for inherited virtual functions.

8.1. Overriding virtual functions in Python

73
The Python session below shows how to override Animal::go and invoke it via a virtual method call.

```python
>>> from example import *
>>> d = Dog()
>>> call_go(d)
'woof! woof! woof!'
>>> class Cat(Animal):
...     def go(self, n_times):
...         return "meow! " * n_times
...     
... >>> c = Cat()
>>> call_go(c)
'meow! meow! meow!'
```

If you are defining a custom constructor in a derived Python class, you must ensure that you explicitly call the bound C++ constructor using `__init__`, regardless of whether it is a default constructor or not. Otherwise, the memory for the C++ portion of the instance will be left uninitialized, which will generally leave the C++ instance in an invalid state and cause undefined behavior if the C++ instance is subsequently used.

Changed in version 2.6: The default pybind11 metaclass will throw a `TypeError` when it detects that `__init__` was not called by a derived class.

Here is an example:

```python
class Dachshund(Dog):
    def __init__(self, name):
        Dog.__init__(self)  # Without this, a TypeError is raised.
        self.name = name

    def bark(self):
        return "yap!"
```

Note that a direct `__init__` constructor should be called, and `super()` should not be used. For simple cases of linear inheritance, `super()` may work, but once you begin mixing Python and C++ multiple inheritance, things will fall apart due to differences between Python’s MRO and C++’s mechanisms.

Please take a look at the `General notes regarding convenience macros` before using this feature.

Note: When the overridden type returns a reference or pointer to a type that pybind11 converts from Python (for example, numeric values, std::string, and other built-in value-converting types), there are some limitations to be aware of:

- because in these cases there is no C++ variable to reference (the value is stored in the referenced Python variable), pybind11 provides one in the `PYBIND11_OVERRIDE` macros (when needed) with static storage duration. Note that this means that invoking the overridden method on any instance will change the referenced value stored in all instances of that type.
- Attempts to modify a non-const reference will not have the desired effect: it will change only the static cache variable, but this change will not propagate to underlying Python instance, and the change will be replaced the next time the override is invoked.

Warning: The `PYBIND11_OVERRIDE` and accompanying macros used to be called `PYBIND11_OVERLOAD` up until pybind11 v2.5.0, and `get_override()` used to be called `get_overload`. This naming was corrected and the

8.1. Overriding virtual functions in Python
older macro and function names may soon be deprecated, in order to reduce confusion with overloaded functions and methods and py::overload_cast (see Object-oriented code).

See also:

The file tests/test_virtual_functions.cpp contains a complete example that demonstrates how to override virtual functions using pybind11 in more detail.

8.2 Combining virtual functions and inheritance

When combining virtual methods with inheritance, you need to be sure to provide an override for each method for which you want to allow overrides from derived python classes. For example, suppose we extend the above Animal/Dog example as follows:

```cpp
class Animal {
public:
  virtual std::string go(int n_times) = 0;
  virtual std::string name() { return "unknown"; }
};
class Dog : public Animal {
public:
  std::string go(int n_times) override {
    std::string result;
    for (int i=0; i<n_times; ++i)
      result += bark() + " ";
    return result;
  }
  virtual std::string bark() { return "woof!"; }
};
```

then the trampoline class for Animal must, as described in the previous section, override go() and name(), but in order to allow python code to inherit properly from Dog, we also need a trampoline class for Dog that overrides both the added bark() method and the go() and name() methods inherited from Animal (even though Dog doesn’t directly override the name() method):

```cpp
class PyAnimal : public Animal {
public:
  using Animal::Animal; // Inherit constructors
  std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); }
  std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
};
class PyDog : public Dog {
public:
  using Dog::Dog; // Inherit constructors
  std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); }
  std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
  std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
};
```
Note: Note the trailing commas in the PYBIND11_OVERRIDE calls to name() and bark(). These are needed to portably implement a trampoline for a function that does not take any arguments. For functions that take a nonzero number of arguments, the trailing comma must be omitted.

A registered class derived from a pybind11-registered class with virtual methods requires a similar trampoline class, even if it doesn’t explicitly declare or override any virtual methods itself:

class Husky : public Dog {}
class PyHusky : public Husky {
public:
 using Husky::Husky; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name,); }
 std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark,); }
};

There is, however, a technique that can be used to avoid this duplication (which can be especially helpful for a base class with several virtual methods). The technique involves using template trampoline classes, as follows:

template <class AnimalBase> class PyAnimal : public AnimalBase {
public:
 using AnimalBase::AnimalBase; // Inherit constructors
 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); }
 std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name,); }
};
template <class DogBase> class PyDog : public PyAnimal<DogBase> {
public:
 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
 // Override PyAnimal's pure virtual go() with a non-pure one:
 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); }
 std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark,); }
};

This technique has the advantage of requiring just one trampoline method to be declared per virtual method and pure virtual method override. It does, however, require the compiler to generate at least as many methods (and possibly more, if both pure virtual and overridden pure virtual methods are exposed, as above).

The classes are then registered with pybind11 using:

```cpp
py::class_<Animal, PyAnimal>> animal(m, "Animal");
py::class_<Dog, Animal, PyDog>> dog(m, "Dog");
py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions
```

Note that Husky did not require a dedicated trampoline template class at all, since it neither declares any new virtual methods nor provides any pure virtual method implementations.

With either the repeated-virtuall or templated trampoline methods in place, you can now create a python class that inherits from Dog:

8.2. Combining virtual functions and inheritance
See also:

See the file tests/test_virtual_functions.cpp for complete examples using both the duplication and templated trampoline approaches.

8.3 Extended trampoline class functionality

8.3.1 Forced trampoline class initialisation

The trampoline classes described in the previous sections are, by default, only initialized when needed. More specifically, they are initialized when a python class actually inherits from a registered type (instead of merely creating an instance of the registered type), or when a registered constructor is only valid for the trampoline class but not the registered class. This is primarily for performance reasons: when the trampoline class is not needed for anything except virtual method dispatching, not initializing the trampoline class improves performance by avoiding needing to do a run-time check to see if the inheriting python instance has an overridden method.

Sometimes, however, it is useful to always initialize a trampoline class as an intermediate class that does more than just handle virtual method dispatching. For example, such a class might perform extra class initialization, extra destruction operations, and might define new members and methods to enable a more python-like interface to a class.

In order to tell pybind11 that it should *always* initialize the trampoline class when creating new instances of a type, the class constructors should be declared using `py::init_alias<Args, ...>()` instead of the usual `py::init<Args, ...>()`. This forces construction via the trampoline class, ensuring member initialization and (eventual) destruction.

See also:

See the file tests/test_virtual_functions.cpp for complete examples showing both normal and forced trampoline instantiation.

8.3.2 Different method signatures

The macro’s introduced in *Overriding virtual functions in Python* cover most of the standard use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy to create a direct one-on-one mapping between the arguments and method return type.

An example would be when the C++ signature contains output arguments using references (See also *Limitations involving reference arguments*). Another way of solving this is to use the method body of the trampoline class to do conversions to the input and return of the Python method.

The main building block to do so is the `get_override()`, this function allows retrieving a method implemented in Python from within the trampoline’s methods. Consider for example a C++ method which has the signature `bool myMethod(int32_t& value)`, where the return indicates whether something should be done with the value. This can be made convenient on the Python side by allowing the Python function to return `None` or an `int`:

```cpp
bool MyClass::myMethod(int32_t& value)
{
    pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
    // Try to look up the overridden method on the Python side.
    pybind11::function override = pybind11::get_override(this, "myMethod");
    // (continues on next page)
```
if (override) {
 auto obj = override(value); // Call the Python function.
 if (py::isinstance<py::int_>(obj)) {
 // check if it returned a Python integer
 auto type = obj.cast<int32_t>(); // Cast it and assign it to the value.
 return true; // Return true; value should be used.
 } else {
 return false; // Python returned none, return false.
 }
}
return false; // Alternatively return MyClass::myMethod(value);

8.4 Custom constructors

The syntax for binding constructors was previously introduced, but it only works when a constructor of the appropriate arguments actually exists on the C++ side. To extend this to more general cases, pybind11 makes it possible to bind factory functions as constructors. For example, suppose you have a class like this:

```cpp
class Example {
    private:
        Example(int); // private constructor
    public:
        // Factory function:
        static Example create(int a) { return Example(a); }
};
py::class_<Example>(m, "Example")
    .def(py::init(&Example::create));
```

While it is possible to create a straightforward binding of the static create method, it may sometimes be preferable to expose it as a constructor on the Python side. This can be accomplished by calling `.def(py::init(...))` with the function reference returning the new instance passed as an argument. It is also possible to use this approach to bind a function returning a new instance by raw pointer or by the holder (e.g. `std::unique_ptr`).

The following example shows the different approaches:

```cpp
class Example {
    private:
        Example(int); // private constructor
    public:
        // Factory function - returned by value:
        static Example create(int a) { return Example(a); }
    
    // These constructors are publicly callable:
    Example(double);
    Example(int, int);
    Example<std::string>;
};
py::class_<Example>(m, "Example")
```

(continues on next page)
// Bind the factory function as a constructor:
.def(py::init(&Example::create))
// Bind a lambda function returning a pointer wrapped in a holder:
.def(py::init([](std::string arg) {
 return std::unique_ptr<Example>(new Example(arg));
}))
// Return a raw pointer:
.def(py::init([](int a, int b) { return new Example(a, b); }))
// You can mix the above with regular C++ constructor bindings as well:
.def(py::init<double>())
;

When the constructor is invoked from Python, pybind11 will call the factory function and store the resulting C++ instance in the Python instance.

When combining factory functions constructors with virtual function trampolines there are two approaches. The first is to add a constructor to the alias class that takes a base value by rvalue-reference. If such a constructor is available, it will be used to construct an alias instance from the value returned by the factory function. The second option is to provide two factory functions to py::init(): the first will be invoked when no alias class is required (i.e. when the class is being used but not inherited from in Python), and the second will be invoked when an alias is required.

You can also specify a single factory function that always returns an alias instance: this will result in behaviour similar to py::init_alias<...>(), as described in the extended trampoline class documentation.

The following example shows the different factory approaches for a class with an alias:

```cpp
#include <pybind11/factory.h>
class Example {
public:
    // ...
    virtual ~Example() = default;
};
class PyExample : public Example {
public:
    using Example::Example;
    PyExample(Example &&base) : Example(std::move(base)) {}  
};
py::class_<Example, PyExample>(m, "Example")
    // Returns an Example pointer. If a PyExample is needed, the Example
    // instance will be moved via the extra constructor in PyExample, above.
    .def(py::init([]() { return new Example(); }))
    // Two callbacks:
    .def(py::init([]() { return new Example(); }) /* no alias needed */,
         []() { return new PyExample(); } /* alias needed */)  
    // *Always* returns an alias instance (like py::init_alias<...>())
    .def(py::init([]() { return new PyExample(); }))
    ;
```

8.4. Custom constructors
8.4.1 Brace initialization

pybind11::init<> internally uses C++11 brace initialization to call the constructor of the target class. This means that it can be used to bind implicit constructors as well:

```cpp
struct Aggregate {
    int a;
    std::string b;
};
	py::class_<Aggregate>(m, "Aggregate")
    .def(py::init<int, const std::string &>());
```

Note: Note that brace initialization preferentially invokes constructor overloads taking a std::initializer_list. In the rare event that this causes an issue, you can work around it by using py::init(...) with a lambda function that constructs the new object as desired.

8.5 Non-public destructors

If a class has a private or protected destructor (as might e.g. be the case in a singleton pattern), a compile error will occur when creating bindings via pybind11. The underlying issue is that the std::unique_ptr holder type that is responsible for managing the lifetime of instances will reference the destructor even if no deallocations ever take place. In order to expose classes with private or protected destructors, it is possible to override the holder type via a holder type argument to class_. Pybind11 provides a helper class py::nodelete that disables any destructor invocations. In this case, it is crucial that instances are deallocated on the C++ side to avoid memory leaks.

```cpp
/* ... definition ... */

class MyClass {
    private:
        ~MyClass() { }
};

/* ... binding code ... */
	py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
    .def(py::init<()>);
```

8.6 Destructors that call Python

If a Python function is invoked from a C++ destructor, an exception may be thrown of type error_already_set. If this error is thrown out of a class destructor, std::terminate() will be called, terminating the process. Class destructors must catch all exceptions of type error_already_set to discard the Python exception using error_already_set::discard_as_unraisable().

Every Python function should be treated as possibly throwing. When a Python generator stops yielding items, Python will throw a StopIteration exception, which can pass through C++ destructors if the generator’s stack frame holds the last reference to C++ objects.

For more information, see the documentation on exceptions.
class MyClass {
 public:
 ~MyClass() {
 try {
 py::print("Even printing is dangerous in a destructor");
 py::exec("raise ValueError('This is an unraisable exception')");
 } catch (py::error_already_set &e) {
 // error_context should be information about where/why the occurred,
 // e.g. use __func__ to get the name of the current function
 e.discard_as_unraisable(__func__);
 }
 }
};

Note: pybind11 does not support C++ destructors marked noexcept(false).

New in version 2.6.

8.7 Implicit conversions

Suppose that instances of two types A and B are used in a project, and that an A can easily be converted into an instance of type B (examples of this could be a fixed and an arbitrary precision number type).

```cpp
py::class_<A>(m, "A")
    /// ... members ...
py::class_<B>(m, "B")
    .def(py::init<A>())
    /// ... members ...

m.def("func",
    [](const B &){ /* .... */ });
```

To invoke the function `func` using a variable `a` containing an `A` instance, we’d have to write `func(B(a))` in Python. On the other hand, C++ will automatically apply an implicit type conversion, which makes it possible to directly write `func(a)`.

In this situation (i.e. where B has a constructor that converts from A), the following statement enables similar implicit conversions on the Python side:

```cpp
py::implicitly_convertible<A, B>();
```

Note: Implicit conversions from A to B only work when B is a custom data type that is exposed to Python via pybind11.

To prevent runaway recursion, implicit conversions are non-reentrant: an implicit conversion invoked as part of another implicit conversion of the same type (i.e. from A to B) will fail.
8.8 Static properties

The section on *Instance and static fields* discussed the creation of instance properties that are implemented in terms of C++ getters and setters.

Static properties can also be created in a similar way to expose getters and setters of static class attributes. Note that the implicit self argument also exists in this case and is used to pass the Python type subclass instance. This parameter will often not be needed by the C++ side, and the following example illustrates how to instantiate a lambda getter function that ignores it:

```cpp
py::class_<Foo>(m, "Foo")
    .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
```

8.9 Operator overloading

Suppose that we’re given the following `Vector2` class with a vector addition and scalar multiplication operation, all implemented using overloaded operators in C++.

```cpp
class Vector2 {
public:
    Vector2(float x, float y) : x(x), y(y) { }

    Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
    Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
    Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
    Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

    friend Vector2 operator*(float f, const Vector2 &v) {
        return Vector2(f * v.x, f * v.y);
    }

    std::string toString() const {
        return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
    }

private:
    float x, y;
};
```

The following snippet shows how the above operators can be conveniently exposed to Python.

```cpp
#include <pybind11/operators.h>

PYBIND11_MODULE(example, m) {
    py::class_<Vector2>(m, "Vector2")
        .def(py::init<float, float>())
        .def(py::self + py::self)
        .def(py::self += py::self)
        .def(py::self *= float())
        .def(float() * py::self)
        .def(py::self * float())
        .def(-py::self)
```

(continues on next page)
Note that a line like
```
def(py::self * float())
```
is really just short hand notation for
```
def("__mul__", [](const Vector2 &a, float b) {
    return a * b;
}, py::is_operator())
```

This can be useful for exposing additional operators that don't exist on the C++ side, or to perform other types of customization. The `py::is_operator` flag marker is needed to inform pybind11 that this is an operator, which returns `NotImplemented` when invoked with incompatible arguments rather than throwing a type error.

Note: To use the more convenient `py::self` notation, the additional header file `pybind11/operators.h` must be included.

See also:
The file `tests/test_operator_overloading.cpp` contains a complete example that demonstrates how to work with overloaded operators in more detail.

8.10 Pickling support

Python's `pickle` module provides a powerful facility to serialize and de-serialize a Python object graph into a binary data stream. To pickle and unpickle C++ classes using pybind11, a `py::pickle()` definition must be provided. Suppose the class in question has the following signature:

```cpp
class Pickleable {
    public:
        Pickleable(const std::string &value) : m_value(value) { }
        std::string &value() const { return m_value; }
        void setExtra(int extra) { m_extra = extra; }
        int extra() const { return m_extra; }
    private:
        std::string m_value;
        int m_extra = 0;
};
```

Pickling support in Python is enabled by defining the `__setstate__` and `__getstate__` methods\(^1\). For pybind11 classes, use `py::pickle()` to bind these two functions:

```
py::class_<Pickleable>(m, "Pickleable")
    .def(py::init<std::string>())
    .def("value", &Pickleable::value)
```

\(^1\) http://docs.python.org/3/library/pickle.html#pickling-class-instances
.def("extra", &Pickleable::extra)
.def("setExtra", &Pickleable::setExtra)
.def(py::pickle(
 [](const Pickleable &p) { // __getstate__
 /* Return a tuple that fully encodes the state of the object */
 return py::make_tuple(p.value(), p.extra());
 },
 [](py::tuple t) { // __setstate__
 if (t.size() != 2)
 throw std::runtime_error("Invalid state!");
 /* Create a new C++ instance */
 Pickleable p(t[0].cast<std::string>());
 /* Assign any additional state */
 p.setExtra(t[1].cast<int>());
 return p;
 });

The __setstate__ part of the py::pickle() definition follows the same rules as the single-argument version of py::init(). The return type can be a value, pointer or holder type. See Custom constructors for details.

An instance can now be pickled as follows:

```python
import pickle
p = Pickleable("test_value")
p.setExtra(15)
data = pickle.dumps(p)
```

Note: If given, the second argument to dumps must be 2 or larger - 0 and 1 are not supported. Newer versions are also fine; for instance, specify -1 to always use the latest available version. Beware: failure to follow these instructions will cause important pybind11 memory allocation routines to be skipped during unpickling, which will likely lead to memory corruption and/or segmentation faults. Python defaults to version 3 (Python 3-3.7) and version 4 for Python 3.8+.

See also:
The file tests/test_pickling.cpp contains a complete example that demonstrates how to pickle and unpickle types using pybind11 in more detail.
8.11 Deepcopy support

Python normally uses references in assignments. Sometimes a real copy is needed to prevent changing all copies. The copy module\(^2\) provides these capabilities.

A class with pickle support is automatically also (deep)copy compatible. However, performance can be improved by adding custom \texttt{__copy_} and \texttt{__deepcopy_} methods.

For simple classes (deep)copy can be enabled by using the copy constructor, which should look as follows:

```python
py::class_<Copyable>(m, "Copyable")
    .def("\_\_copy\_", [](const Copyable &self) {
        return Copyable(self);
    })
    .def("\_\_deepcopy\_", [](const Copyable &self, py::dict) {
        return Copyable(self);
    }, "memo\"_\_a);
```

\textbf{Note:} Dynamic attributes will not be copied in this example.

8.12 Multiple Inheritance

\textit{pybind11} can create bindings for types that derive from multiple base types (aka. \textit{multiple inheritance}). To do so, specify all bases in the template arguments of the \texttt{class_} declaration:

```python
py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
...
```

The base types can be specified in arbitrary order, and they can even be interspersed with alias types and holder types (discussed earlier in this document)—\textit{pybind11} will automatically find out which is which. The only requirement is that the first template argument is the type to be declared.

It is also permitted to inherit multiply from exported C++ classes in Python, as well as inheriting from multiple Python and/or \textit{pybind11}-exported classes.

There is one caveat regarding the implementation of this feature:

When only one base type is specified for a C++ type that actually has multiple bases, \textit{pybind11} will assume that it does not participate in multiple inheritance, which can lead to undefined behavior. In such cases, add the tag \texttt{multiple_inheritance} to the class constructor:

```python
py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
```

The tag is redundant and does not need to be specified when multiple base types are listed.

\(^2\) \url{https://docs.python.org/3/library/copy.html}
8.13 Module-local class bindings

When creating a binding for a class, pybind11 by default makes that binding “global” across modules. What this means is that a type defined in one module can be returned from any module resulting in the same Python type. For example, this allows the following:

```cpp
// In the module1.cpp binding code for module1:
py::class_<Pet>(m, "Pet")
    .def(py::init<std::string>())
    .def_readonly("name", &Pet::name);

// In the module2.cpp binding code for module2:
py::def("create_pet", [](std::string name) { return new Pet(name); });
```

```python
>>> from module1 import Pet
>>> from module2 import create_pet

pet1 = Pet("Kitty")
pet2 = create_pet("Doggy")
pet2.name()
'Doggy'
```

When writing binding code for a library, this is usually desirable: this allows, for example, splitting up a complex library into multiple Python modules.

In some cases, however, this can cause conflicts. For example, suppose two unrelated modules make use of an external C++ library and each provide custom bindings for one of that library’s classes. This will result in an error when a Python program attempts to import both modules (directly or indirectly) because of conflicting definitions on the external type:

```cpp
// dogs.cpp

// Binding for external library class:
py::class_<pets::Pet>(m, "Pet")
    .def("name", &pets::Pet::name);

// Binding for local extension class:
py::class_<Dog, pets::Pet>(m, "Dog")
    .def(py::init<std::string>());
```

```python
>>> from module1 import Pet
>>> from module2 import create_pet

pet1 = Pet("Kitty")
pet2 = create_pet("Doggy")
pet2.name()
'Doggy'
```

When writing binding code for a library, this is usually desirable: this allows, for example, splitting up a complex library into multiple Python modules.

In some cases, however, this can cause conflicts. For example, suppose two unrelated modules make use of an external C++ library and each provide custom bindings for one of that library’s classes. This will result in an error when a Python program attempts to import both modules (directly or indirectly) because of conflicting definitions on the external type:

```cpp
// cats.cpp, in a completely separate project from the above dogs.cpp.

// Binding for external library class:
py::class_<pets::Pet>(m, "Pet")
    .def("get_name", &pets::Pet::name);

// Binding for local extending class:
py::class_<Cat, pets::Pet>(m, "Cat")
    .def(py::init<std::string>());
```

```python
>>> import cats
>>> import dogs

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: generic_type: type "Pet" is already registered!
```
To get around this, you can tell pybind11 to keep the external class binding localized to the module by passing the `py::module_local()` attribute into the `py::class_` constructor:

```cpp
// Pet binding in dogs.cpp:
py::class_<pets::Pet>(m, "Pet", py::module_local())
    .def("name", &pets::Pet::name);

// Pet binding in cats.cpp:
py::class_<pets::Pet>(m, "Pet", py::module_local())
    .def("get_name", &pets::Pet::name);
```

This makes the Python-side `dogs.Pet` and `cats.Pet` into distinct classes, avoiding the conflict and allowing both modules to be loaded. C++ code in the dogs module that casts or returns a Pet instance will result in a `dogs.Pet` Python instance, while C++ code in the cats module will result in a `cats.Pet` Python instance.

This does come with two caveats, however: First, external modules cannot return or cast a Pet instance to Python (unless they also provide their own local bindings). Second, from the Python point of view they are two distinct classes.

Note that the locality only applies in the C++ -> Python direction. When passing such a `py::module_local` type into a C++ function, the module-local classes are still considered. This means that if the following function is added to any module (including but not limited to the cats and dogs modules above) it will be callable with either a `dogs.Pet` or `cats.Pet` argument:

```cpp
m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
```

For example, suppose the above function is added to each of cats.cpp, dogs.cpp and frogs.cpp (where frogs.cpp is some other module that does not bind Pets at all).

```python
>>> import cats, dogs, frogs  # No error because of the added py::module_local()
>>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
>>> (cats.pet_name(mycat), dogs.pet_name(mydog))
('Fluffy', 'Rover')
>>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
('Rover', 'Fluffy', 'Fluffy')
```

It is possible to use `py::module_local()` registrations in one module even if another module registers the same type globally: within the module with the module-local definition, all C++ instances will be cast to the associated bound Python type. In other modules any such values are converted to the global Python type created elsewhere.

Note: STL bindings (as provided via the optional `pybind11/stl_bind.h` header) apply `py::module_local` by default when the bound type might conflict with other modules; see [Binding STL containers](#) for details.

Note: The localization of the bound types is actually tied to the shared object or binary generated by the compiler/linker. For typical modules created with `PYBIND11_MODULE()`, this distinction is not significant. It is possible, however, when [Embedding the interpreter](#) to embed multiple modules in the same binary (see [Adding embedded modules](#)). In such a case, the localization will apply across all embedded modules within the same binary.

See also:

The file `tests/test_local_bindings.cpp` contains additional examples that demonstrate how `py::module_local()` works.
8.14 Binding protected member functions

It's normally not possible to expose protected member functions to Python:

```cpp
class A {
protected:
    int foo() const { return 42; }
};
py::class_<A>(m, "A")
    .def("foo", &A::foo);
// error: 'foo' is a protected member of 'A'
```

On one hand, this is good because non-public members aren't meant to be accessed from the outside. But we may want to make use of protected functions in derived Python classes.

The following pattern makes this possible:

```cpp
class A {
protected:
    int foo() const { return 42; }
};
class Publicist : public A {
    // helper type for exposing protected functions
public:
    using A::foo; // inherited with different access modifier
};
py::class_<A>(m, "A")
    // bind the primary class
    .def("foo", &Publicist::foo); // expose protected methods via the publicist
```

This works because &Publicist::foo is exactly the same function as &A::foo (same signature and address), just with a different access modifier. The only purpose of the Publicist helper class is to make the function name public.

If the intent is to expose protected virtual functions which can be overridden in Python, the publicist pattern can be combined with the previously described trampoline:

```cpp
class A {
public:
    virtual ~A() = default;

protected:
    virtual int foo() const { return 42; }
};
class Trampoline : public A {
public:
    int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
};
class Publicist : public A {
public:
    using A::foo;
};
```

(continues on next page)
8.15 Binding final classes

Some classes may not be appropriate to inherit from. In C++11, classes can use the `final` specifier to ensure that a class cannot be inherited from. The `py::is_final` attribute can be used to ensure that Python classes cannot inherit from a specified type. The underlying C++ type does not need to be declared final.

```cpp
class IsFinal final
{
};
py::class_<IsFinal>(m, "IsFinal", py::is_final());
```

When you try to inherit from such a class in Python, you will now get this error:

```python
>>> class PyFinalChild(IsFinal):
...     pass
...
TypeError: type 'IsFinal' is not an acceptable base type
```

Note: This attribute is currently ignored on PyPy

New in version 2.6.

8.16 Binding classes with template parameters

`pybind11` can also wrap classes that have template parameters. Consider these classes:

```cpp
struct Cat {}
struct Dog {}

template <typename PetType>
struct Cage
{
    Cage(PetType& pet);
    PetType& get();
};
```

C++ templates may only be instantiated at compile time, so `pybind11` can only wrap instantiated templated classes. You cannot wrap a non-instantiated template:

```cpp
// BROKEN (this will not compile)
py::class_<Cage>(m, "Cage")
    .def("get", &Cage::get);
```

You must explicitly specify each template/type combination that you want to wrap separately.
// ok
py::class_<Cage<Cat>>(m, "CatCage")
 .def("get", &Cage<Cat>::get);

// ok
py::class_<Cage<Dog>>(m, "DogCage")
 .def("get", &Cage<Dog>::get);

If your class methods have template parameters you can wrap those as well, but once again each instantiation must be
explicitly specified:

typename <typename T>
struct MyClass {
 template <typename V>
 T fn(V v);
};

py::class<MyClass<int>>(m, "MyClassT")
 .def("fn", &MyClass<int>::fn<std::string>);

8.17 Custom automatic downcasters

As explained in *Inheritance and automatic downcasting*, pybind11 comes with built-in understanding of the dynamic
type of polymorphic objects in C++; that is, returning a Pet to Python produces a Python object that knows it’s wrapping
a Dog, if Pet has virtual methods and pybind11 knows about Dog and this Pet is in fact a Dog. Sometimes, you might
want to provide this automatic downcasting behavior when creating bindings for a class hierarchy that does not use
standard C++ polymorphism, such as LLVM. As long as there’s some way to determine at runtime whether a downcast
is safe, you can proceed by specializing the `pybind11::polymorphic_type_hook` template:

```cpp
enum class PetKind { Cat, Dog, Zebra };  
struct Pet {
    // Not polymorphic: has no virtual methods
    const PetKind kind;
    int age = 0;
    protected:
    Pet(PetKind _kind) : kind(_kind) {}  
};  
struct Dog : Pet {
    Dog() : Pet(PetKind::Dog) {}  
    std::string sound = "woof!";
    std::string bark() const { return sound; }
};

namespace pybind11 {
    template<> struct polymorphic_type_hook<Pet> {
        static const void *get(const Pet *src, const std::type_info *type) {
            // note that src may be nullptr
            if (src && src->kind == PetKind::Dog) {
                type = &typeid(Dog);
                return static_cast<const Dog*>(src);
            }
        }
    }
}
```

(continues on next page)

3 https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
When pybind11 wants to convert a C++ pointer of type `Base*` to a Python object, it calls `polymorphic_type_hook<Base>::get()` to determine if a downcast is possible. The `get()` function should use whatever runtime information is available to determine if its `src` parameter is in fact an instance of some class `Derived` that inherits from `Base`. If it finds such a `Derived`, it sets `type = typeid(Derived)` and returns a pointer to the `Derived` object that contains `src`. Otherwise, it just returns `src`, leaving `type` at its default value of `nullptr`. If you set `type` to a type that pybind11 doesn't know about, no downcasting will occur, and the original `src` pointer will be used with its static type `Base*`.

It is critical that the returned pointer and `type` argument of `get()` agree with each other: if `type` is set to something non-null, the returned pointer must point to the start of an object whose type is `type`. If the hierarchy being exposed uses only single inheritance, a simple `return src;` will achieve this just fine, but in the general case, you must cast `src` to the appropriate derived-class pointer (e.g. using `static_cast<Derived>(src)`) before allowing it to be returned as a `void*`.

Note: pybind11’s standard support for downcasting objects whose types have virtual methods is implemented using `polymorphic_type_hook` too, using the standard C++ ability to determine the most-derived type of a polymorphic object using `typeid()` and to cast a base pointer to that most-derived type (even if you don’t know what it is) using `dynamic_cast<void*>`.

See also:
The file `tests/test_tagbased_polymorphic.cpp` contains a more complete example, including a demonstration of how to provide automatic downcasting for an entire class hierarchy without writing one `get()` function for each class.

8.18 Accessing the type object

You can get the type object from a C++ class that has already been registered using:

```cpp
py::type T_py = py::type::of<T>();
```

You can directly use `py::type::of(ob)` to get the type object from any python object, just like `type(ob)` in Python.

Note: Other types, like `py::type::of<int>()`, do not work, see *Type conversions*.

New in version 2.6.
8.19 Custom type setup

For advanced use cases, such as enabling garbage collection support, you may wish to directly manipulate the PyHeapTypeObject corresponding to a py::class_ definition.

You can do that using py::custom_type_setup:

```cpp
struct OwnsPythonObjects {
    py::object value = py::none();
};
py::class_<OwnsPythonObjects> cls(
    m, "OwnsPythonObjects", py::custom_type_setup([](PyHeapTypeObject *heap_type) {
        auto *type = &heap_type->ht_type;
        type->tp_flags |= Py_TPFLAGS_HAVE_GC;
        type->tp_traverse = [](PyObject *self_base, visitproc visit, void *arg) {
            auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
            Py_VISIT(self.value.ptr());
            return 0;
        };
        type->tp_clear = [](PyObject *self_base) {
            auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
            self.value = py::none();
            return 0;
        };
    }));
cls.def(py::init<>());
cls.def_readwrite("value", &OwnsPythonObjects::value);
```

New in version 2.8.
9.1 Built-in C++ to Python exception translation

When Python calls C++ code through pybind11, pybind11 provides a C++ exception handler that will trap C++ exceptions, translate them to the corresponding Python exception, and raise them so that Python code can handle them.

pybind11 defines translations for `std::exception` and its standard subclasses, and several special exception classes that translate to specific Python exceptions. Note that these are not actually Python exceptions, so they cannot be examined using the Python C API. Instead, they are pure C++ objects that pybind11 will translate the corresponding Python exception when they arrive at its exception handler.

<table>
<thead>
<tr>
<th>Exception thrown by C++</th>
<th>Translated to Python exception type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>std::exception</code></td>
<td><code>RuntimeError</code></td>
</tr>
<tr>
<td><code>std::bad_alloc</code></td>
<td><code>MemoryError</code></td>
</tr>
<tr>
<td><code>std::domain_error</code></td>
<td><code>ValueError</code></td>
</tr>
<tr>
<td><code>std::invalid_argument</code></td>
<td><code>ValueError</code></td>
</tr>
<tr>
<td><code>std::length_error</code></td>
<td><code>ValueError</code></td>
</tr>
<tr>
<td><code>std::out_of_range</code></td>
<td><code>IndexError</code></td>
</tr>
<tr>
<td><code>std::range_error</code></td>
<td><code>ValueError</code></td>
</tr>
<tr>
<td><code>std::overflow_error</code></td>
<td><code>OverflowError</code></td>
</tr>
<tr>
<td><code>pybind11::stop_iteration</code></td>
<td><code>StopIteration</code> (used to implement custom iterators)</td>
</tr>
<tr>
<td><code>pybind11::index_error</code></td>
<td><code>IndexError</code> (used to indicate out of bounds access in <code>__getitem__</code>, <code>__setitem__</code>, etc.)</td>
</tr>
<tr>
<td><code>pybind11::key_error</code></td>
<td><code>KeyError</code> (used to indicate out of bounds access in <code>__getitem__</code>, <code>__setitem__</code> in dict-like objects, etc.)</td>
</tr>
<tr>
<td><code>pybind11::value_error</code></td>
<td><code>ValueError</code> (used to indicate wrong value passed in <code>container.remove(...)</code>)</td>
</tr>
<tr>
<td><code>pybind11::type_error</code></td>
<td><code>TypeError</code></td>
</tr>
<tr>
<td><code>pybind11::buffer_error</code></td>
<td><code>BufferError</code></td>
</tr>
<tr>
<td><code>pybind11::import_error</code></td>
<td><code>ImportError</code></td>
</tr>
<tr>
<td><code>pybind11::attribute_error</code></td>
<td><code>AttributeError</code></td>
</tr>
<tr>
<td>Any other exception</td>
<td><code>RuntimeError</code></td>
</tr>
</tbody>
</table>

Exception translation is not bidirectional. That is, catching the C++ exceptions defined above will not trap exceptions that originate from Python. For that, catch `pybind11::error_already_set`. See `below` for further details.

There is also a special exception `cast_error` that is thrown by `handle::call()` when the input arguments cannot be converted to Python objects.
9.2 Registering custom translators

If the default exception conversion policy described above is insufficient, pybind11 also provides support for registering custom exception translators. Similar to pybind11 classes, exception translators can be local to the module they are defined in or global to the entire python session. To register a simple exception conversion that translates a C++ exception into a new Python exception using the C++ exception’s what() method, a helper function is available:

```
py::register_exception<CppExp>(module, "PyExp");
```

This call creates a Python exception class with the name PyExp in the given module and automatically converts any encountered exceptions of type CppExp into Python exceptions of type PyExp.

A matching function is available for registering a local exception translator:

```
py::register_local_exception<CppExp>(module, "PyExp");
```

It is possible to specify base class for the exception using the third parameter, a handle:

```
py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
```

Then PyExp can be caught both as PyExp and RuntimeError.

The class objects of the built-in Python exceptions are listed in the Python documentation on Standard Exceptions. The default base class is PyExc_Exception.

When more advanced exception translation is needed, the functions `py::register_exception_translator(translator)` and `py::register_local_exception_translator(translator)` can be used to register functions that can translate arbitrary exception types (and which may include additional logic to do so). The functions takes a stateless callable (e.g. a function pointer or a lambda function without captured variables) with the call signature `void(std::exception_ptr)`.

When a C++ exception is thrown, the registered exception translators are tried in reverse order of registration (i.e. the last registered translator gets the first shot at handling the exception). All local translators will be tried before a global translator is tried.

Inside the translator, `std::rethrow_exception` should be used within a try block to re-throw the exception. One or more catch clauses to catch the appropriate exceptions should then be used with each clause using `PyErr_SetString` to set a Python exception or `ex(string)` to set the python exception to a custom exception type (see below).

To declare a custom Python exception type, declare a `py::exception` variable and use this in the associated exception translator (note: it is often useful to make this a static declaration when using it inside a lambda expression without requiring capturing).

The following example demonstrates this for a hypothetical exception classes MyCustomException and OtherException: the first is translated to a custom python exception MyCustomError, while the second is translated to a standard python RuntimeError:

```
static py::exception<MyCustomException> exc(m, "MyCustomError");
py::register_exception_translator([](std::exception_ptr p) {
    try {
        if (p) std::rethrow_exception(p);
    } catch (const MyCustomException &e) {
        exc(e.what());
    } catch (const OtherException &e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
    }
});
```

(continues on next page)
Multiple exceptions can be handled by a single translator, as shown in the example above. If the exception is not caught by the current translator, the previously registered one gets a chance.

If none of the registered exception translators is able to handle the exception, it is handled by the default converter as described in the previous section.

See also:
The file `tests/test_exceptions.cpp` contains examples of various custom exception translators and custom exception types.

Note: Call either `PyErr_SetString` or a custom exception’s call operator (`exc(string)`) for every exception caught in a custom exception translator. Failure to do so will cause Python to crash with `SystemError: error return without exception set`.

Exceptions that you do not plan to handle should simply not be caught, or may be explicitly (re-)thrown to delegate it to the other, previously-declared existing exception translators.

Note that `libc++` and `libstdc++` behave differently with `-fvisibility=hidden`. Therefore exceptions that are used across ABI boundaries need to be explicitly exported, as exercised in `tests/test_exceptions.h`. See also: “Problems with C++ exceptions” under GCC Wiki.

9.3 Local vs Global Exception Translators

When a global exception translator is registered, it will be applied across all modules in the reverse order of registration. This can create behavior where the order of module import influences how exceptions are translated.

If module 1 has the following translator:

```cpp
py::register_exception_translator([](std::exception_ptr p) {
  try {
    if (p) std::rethrow_exception(p);
  } catch (const std::invalid_argument &e) {
    PyErr_SetString("module1 handled this");
  }
});
```

and module 2 has the following similar translator:

```cpp
py::register_exception_translator([](std::exception_ptr p) {
  try {
    if (p) std::rethrow_exception(p);
  } catch (const std::invalid_argument &e) {
    PyErr_SetString("module2 handled this");
  }
});
```

then which translator handles the `invalid_argument` will be determined by the order that module 1 and module 2 are imported. Since exception translators are applied in the reverse order of registration, which ever module was imported last will ‘win’ and that translator will be applied.
If there are multiple pybind11 modules that share exception types (either standard built-in or custom) loaded into a single python instance and consistent error handling behavior is needed, then local translators should be used.

Changing the previous example to use `register_local_exception_translator` would mean that when invalid_argument is thrown in the module2 code, the module2 translator will always handle it, while in module1, the module1 translator will do the same.

9.4 Handling exceptions from Python in C++

When C++ calls Python functions, such as in a callback function or when manipulating Python objects, and Python raises an `Exception`, pybind11 converts the Python exception into a C++ exception of type `pybind11::error_already_set` whose payload contains a C++ string textual summary and the actual Python exception. `error_already_set` is used to propagate Python exception back to Python (or possibly, handle them in C++).

<table>
<thead>
<tr>
<th>Exception raised in Python</th>
<th>Thrown as C++ exception type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Python Exception</td>
<td><code>pybind11::error_already_set</code></td>
</tr>
</tbody>
</table>

For example:

```cpp
try {
    // open("missing.txt", "r")
    auto file = py::module_::import("io")\n                   .attr("open")("missing.txt", "r");
    auto text = file.attr("read")();
    file.attr("close")();
} catch (py::error_already_set &e) {
    if (e.matches(PyExc_FileNotFoundError)) {
        py::print("missing.txt not found");
    } else if (e.matches(PyExc_PermissionError)) {
        py::print("missing.txt found but not accessible");
    } else {
        throw;
    }
}
```

Note that C++ to Python exception translation does not apply here, since that is a method for translating C++ exceptions to Python, not vice versa. The error raised from Python is always `error_already_set`.

This example illustrates this behavior:

```cpp
try {
    py::eval("raise ValueError('The Ring')");
} catch (py::value_error &boromir) {
    // Boromir never gets the ring
    assert(false);
} catch (py::error_already_set &frodo) {
    // Frodo gets the ring
    py::print("I will take the ring");
}
```

(continues on next page)
9.5 Handling errors from the Python C API

Where possible, use pybind11 wrappers instead of calling the Python C API directly. When calling the Python C API directly, in addition to manually managing reference counts, one must follow the pybind11 error protocol, which is outlined here.

After calling the Python C API, if Python returns an error, throw py::error_already_set(); which allows pybind11 to deal with the exception and pass it back to the Python interpreter. This includes calls to the error setting functions such as PyErr_SetString.

```python
PyErr_SetString(PyExc_TypeError, "C API type error demo");
throw py::error_already_set();
// But it would be easier to simply...
throw py::type_error("pybind11 wrapper type error");
```

Alternately, to ignore the error, call PyErr_Clear.

Any Python error must be thrown or cleared, or Python/pybind11 will be left in an invalid state.

9.6 Chaining exceptions (‘raise from’)

Python has a mechanism for indicating that exceptions were caused by other exceptions:

```python
try:
    print(1 / 0)
except Exception as exc:
    raise RuntimeError("could not divide by zero") from exc
```

To do a similar thing in pybind11, you can use the py::raise_from function. It sets the current python error indicator, so to continue propagating the exception you should throw py::error_already_set().

```python
try {
    py::eval("print(1 / 0)"));
} catch (py::error_already_set &e) {
    py::raise_from(e, PyExc_RuntimeError, "could not divide by zero");
    throw py::error_already_set();
}
```

New in version 2.8.
9.7 Handling unraisable exceptions

If a Python function invoked from a C++ destructor or any function marked `noexcept(true)` (collectively, “noexcept functions”) throws an exception, there is no way to propagate the exception, as such functions may not throw. Should they throw or fail to catch any exceptions in their call graph, the C++ runtime calls `std::terminate()` to abort immediately.

Similarly, Python exceptions raised in a class’s `__del__` method do not propagate, but are logged by Python as an unraisable error. In Python 3.8+, a system hook is triggered and an auditing event is logged.

Any noexcept function should have a try-catch block that traps class:`error_already_set` (or any other exception that can occur). Note that pybind11 wrappers around Python exceptions such as `pybind11::value_error` are not Python exceptions; they are C++ exceptions that pybind11 catches and converts to Python exceptions. Noexcept functions cannot propagate these exceptions either. A useful approach is to convert them to Python exceptions and then `discard_as_unraisable` as shown below.

```cpp
void nonthrowing_func() noexcept(true) {
    try {
        // ...
    }
    catch (py::error_already_set &eas) {
        // Discard the Python error using Python APIs, using the C++ magic
        // variable __func__. Python already knows the type and value and of the
        // exception object.
        eas.discard_as_unraisable(__func__);
    } catch (const std::exception &e) {
        // Log and discard C++ exceptions.
        third_party::log(e);
    }
}
```

New in version 2.6.
SMART Pointers

10.1 std::unique_ptr

Given a class Example with Python bindings, it’s possible to return instances wrapped in C++11 unique pointers, like so

```cpp
std::unique_ptr<Example> create_example() {
    return std::unique_ptr<Example>(new Example());
}
```

```cpp
m.def("create_example", &create_example);
```

In other words, there is nothing special that needs to be done. While returning unique pointers in this way is allowed, it is illegal to use them as function arguments. For instance, the following function signature cannot be processed by pybind11.

```cpp
void do_something_with_example(std::unique_ptr<Example> ex) { ... }
```

The above signature would imply that Python needs to give up ownership of an object that is passed to this function, which is generally not possible (for instance, the object might be referenced elsewhere).

10.2 std::shared_ptr

The binding generator for classes, class_, can be passed a template type that denotes a special holder type that is used to manage references to the object. If no such holder type template argument is given, the default for a type named Type is std::unique_ptr<Type>, which means that the object is deallocated when Python’s reference count goes to zero.

It is possible to switch to other types of reference counting wrappers or smart pointers, which is useful in codebases that rely on them. For instance, the following snippet causes std::shared_ptr to be used instead.

```cpp
py::class_<Example, std::shared_ptr<Example>> /* <- holder type */ obj(m, "Example");
```

Note that any particular class can only be associated with a single holder type.

One potential stumbling block when using holder types is that they need to be applied consistently. Can you guess what’s broken about the following binding code?

```cpp
class Child {}

class Parent {
```
The following Python code will cause undefined behavior (and likely a segmentation fault).

```python
from example import Parent
print(Parent().get_child())
```

The problem is that `Parent::get_child()` returns a pointer to an instance of `Child`, but the fact that this instance is already managed by `std::shared_ptr<...>` is lost when passing raw pointers. In this case, pybind11 will create a second independent `std::shared_ptr<...>` that also claims ownership of the pointer. In the end, the object will be freed twice since these shared pointers have no way of knowing about each other.

There are two ways to resolve this issue:

1. For types that are managed by a smart pointer class, never use raw pointers in function arguments or return values. In other words: always consistently wrap pointers into their designated holder types (such as `std::shared_ptr<...>`). In this case, the signature of `get_child()` should be modified as follows:

   ```cpp
   std::shared_ptr<Child> get_child() { return child; }
   ```

2. Adjust the definition of `Child` by specifying `std::enable_shared_from_this<T>` (see [cppreference](https://en.cppreference.com/w/cpp/memory/enable_shared_from_this) for details) as a base class. This adds a small bit of information to `Child` that allows pybind11 to realize that there is already an existing `std::shared_ptr<...>` and communicate with it. In this case, the declaration of `Child` should look as follows:

   ```cpp
   class Child : public std::enable_shared_from_this<Child> { }; 
   ```

10.3 Custom smart pointers

pybind11 supports `std::unique_ptr` and `std::shared_ptr` right out of the box. For any other custom smart pointer, transparent conversions can be enabled using a macro invocation similar to the following. It must be declared at the top namespace level before any binding code:

```cpp
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
```

The first argument of `PYBIND11_DECLARE_HOLDER_TYPE()` should be a placeholder name that is used as a template parameter of the second argument. Thus, feel free to use any identifier, but use it consistently on both sides; also, don’t use the name of a type that already exists in your codebase.
The macro also accepts a third optional boolean parameter that is set to false by default. Specify

```
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>, true);
```

if `SmartPtr<T>` can always be initialized from a `T*` pointer without the risk of inconsistencies (such as multiple independent `SmartPtr` instances believing that they are the sole owner of the `T*` pointer). A common situation where `true` should be passed is when the `T` instances use intrusive reference counting.

Please take a look at the General notes regarding convenience macros before using this feature.

By default, pybind11 assumes that your custom smart pointer has a standard interface, i.e. provides a `.get()` member function to access the underlying raw pointer. If this is not the case, pybind11’s `holder_helper` must be specialized:

```
// Always needed for custom holder types
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);

// Only needed if the type's `.get()` goes by another name
namespace pybind11 { namespace detail {
    template <typename T>
    struct holder_helper<SmartPtr<T>> { // <-- specialization
        static const T *get(const SmartPtr<T> &p) { return p.getPointer(); }
    };
}}
```

The above specialization informs pybind11 that the custom `SmartPtr` class provides `.get()` functionality via `.getPointer()`.

See also:

The file `tests/test_smart_ptr.cpp` contains a complete example that demonstrates how to work with custom reference-counting holder types in more detail.
Apart from enabling cross-language function calls, a fundamental problem that a binding tool like pybind11 must address is to provide access to native Python types in C++ and vice versa. There are three fundamentally different ways to do this—which approach is preferable for a particular type depends on the situation at hand.

1. Use a native C++ type everywhere. In this case, the type must be wrapped using pybind11-generated bindings so that Python can interact with it.

2. Use a native Python type everywhere. It will need to be wrapped so that C++ functions can interact with it.

3. Use a native C++ type on the C++ side and a native Python type on the Python side. pybind11 refers to this as a type conversion.

Type conversions are the most “natural” option in the sense that native (non-wrapped) types are used everywhere. The main downside is that a copy of the data must be made on every Python/C++ transition: this is needed since the C++ and Python versions of the same type generally won’t have the same memory layout.

pybind11 can perform many kinds of conversions automatically. An overview is provided in the table “List of all built-in conversions”.

The following subsections discuss the differences between these options in more detail. The main focus in this section is on type conversions, which represent the last case of the above list.

11.1 Overview

1. Native type in C++, wrapper in Python

Exposing a custom C++ type using py::class_ was covered in detail in the Object-oriented code section. There, the underlying data structure is always the original C++ class while the py::class_ wrapper provides a Python interface. Internally, when an object like this is sent from C++ to Python, pybind11 will just add the outer wrapper layer over the native C++ object. Getting it back from Python is just a matter of peeling off the wrapper.

2. Wrapper in C++, native type in Python

This is the exact opposite situation. Now, we have a type which is native to Python, like a tuple or a list. One way to get this data into C++ is with the py::object family of wrappers. These are explained in more detail in the Python types section. We’ll just give a quick example here:

```cpp
void print_list(py::list my_list) {
    for (auto item : my_list)
        std::cout << item << " ";
}
```
>>> print_list([1, 2, 3])
1 2 3

The Python list is not converted in any way – it's just wrapped in a C++ py::list class. At its core it's still a Python object. Copying a py::list will do the usual reference-counting like in Python. Returning the object to Python will just remove the thin wrapper.

3. Converting between native C++ and Python types

In the previous two cases we had a native type in one language and a wrapper in the other. Now, we have native types on both sides and we convert between them.

```cpp
void print_vector(const std::vector<int> &v) {
    for (auto item : v)
        std::cout << item << "\n";
}
```

>>> print_vector([1, 2, 3])
1 2 3

In this case, pybind11 will construct a new std::vector<int> and copy each element from the Python list. The newly constructed object will be passed to print_vector. The same thing happens in the other direction: a new list is made to match the value returned from C++.

Lots of these conversions are supported out of the box, as shown in the table below. They are very convenient, but keep in mind that these conversions are fundamentally based on copying data. This is perfectly fine for small immutable types but it may become quite expensive for large data structures. This can be avoided by overriding the automatic conversion with a custom wrapper (i.e. the above-mentioned approach 1). This requires some manual effort and more details are available in the Making opaque types section.

11.1.1 List of all built-in conversions

The following basic data types are supported out of the box (some may require an additional extension header to be included). To pass other data structures as arguments and return values, refer to the section on binding Object-oriented code.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
<th>Header file</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8_t, uint8_t</td>
<td>8-bit integers</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>int16_t, uint16_t</td>
<td>16-bit integers</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>int32_t, uint32_t</td>
<td>32-bit integers</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>int64_t, uint64_t</td>
<td>64-bit integers</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>ssize_t, size_t</td>
<td>Platform-dependent size</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>float, double</td>
<td>Floating point types</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>bool</td>
<td>Two-state Boolean type</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>char</td>
<td>Character literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>char16_t</td>
<td>UTF-16 character literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>char32_t</td>
<td>UTF-32 character literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>wchar_t</td>
<td>Wide character literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>const char *</td>
<td>UTF-8 string literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>const char16_t *</td>
<td>UTF-16 string literal</td>
<td>pybind11/pybind11.h</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 — continued from previous page

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
<th>Header file</th>
</tr>
</thead>
<tbody>
<tr>
<td>const char32_t *</td>
<td>UTF-32 string literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>const wchar_t *</td>
<td>Wide string literal</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::string</td>
<td>STL dynamic UTF-8 string</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::u16string</td>
<td>STL dynamic UTF-16 string</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::u32string</td>
<td>STL dynamic UTF-32 string</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::wstring</td>
<td>STL dynamic wide string</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::string_view, std::u16string_view, etc.</td>
<td>STL C++17 string views</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::pair<T1, T2></td>
<td>Pair of two custom types</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::tuple<...></td>
<td>Arbitrary tuple of types</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::reference_wrapper<...></td>
<td>Reference type wrapper</td>
<td>pybind11/pybind11.h</td>
</tr>
<tr>
<td>std::complex<T></td>
<td>Complex numbers</td>
<td>pybind11/complex.h</td>
</tr>
<tr>
<td>std::array<T, Size></td>
<td>STL static array</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::vector<T></td>
<td>STL dynamic array</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::deque<T></td>
<td>STL double-ended queue</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::valarray<T></td>
<td>STL value array</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::list<T></td>
<td>STL linked list</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::map<T1, T2></td>
<td>STL ordered map</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::unordered_map<T1, T2></td>
<td>STL unordered map</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::set<T></td>
<td>STL ordered set</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::unordered_set<T></td>
<td>STL unordered set</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::optional<T></td>
<td>STL optional type (C++17)</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::experimental::optional<T></td>
<td>STL optional type (exp.)</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::filesystem::path<T></td>
<td>Type-safe union (C++17)</td>
<td>pybind11/stl.h</td>
</tr>
<tr>
<td>std::filesystem::path</td>
<td>STL path (C++17)¹</td>
<td>pybind11/stl/filesystem.h</td>
</tr>
<tr>
<td>std::function<...></td>
<td>STL polymorphic function</td>
<td>pybind11/stl/function.h</td>
</tr>
<tr>
<td>std::chrono::duration<...></td>
<td>STL time duration</td>
<td>pybind11/chrono.h</td>
</tr>
<tr>
<td>Eigen::Matrix<...></td>
<td>Eigen: dense matrix</td>
<td>pybind11/eigen.h</td>
</tr>
<tr>
<td>Eigen::Map<...></td>
<td>Eigen: mapped memory</td>
<td>pybind11/eigen.h</td>
</tr>
<tr>
<td>Eigen::SparseMatrix<...></td>
<td>Eigen: sparse matrix</td>
<td>pybind11/eigen.h</td>
</tr>
</tbody>
</table>

11.2 Strings, bytes and Unicode conversions

11.2.1 Passing Python strings to C++

When a Python `str` is passed from Python to a C++ function that accepts `std::string` or `char *` as arguments, pybind11 will encode the Python string to UTF-8. All Python `str` can be encoded in UTF-8, so this operation does not fail.

The C++ language is encoding agnostic. It is the responsibility of the programmer to track encodings. It’s often easiest to simply use UTF-8 everywhere.

```cpp
m.def("utf8_test", 
    [] (const std::string &s) {
        cout << "utf-8 is icing on the cake.\n";
    });
```

¹ `std::filesystem::path` is converted to `pathlib.Path` and `os.PathLike` is converted to `std::filesystem::path`.

11.2. Strings, bytes and Unicode conversions 104
cout << s;
};

m.def("utf8_charptr",
[](const char *s) {
 cout << "My favorite food is\n";
 cout << s;
};

>>> utf8_test("中文")
utf-8 is icing on the cake.

>>> utf8_charptr("牛")
My favorite food is 牛

Note: Some terminal emulators do not support UTF-8 or emoji fonts and may not display the example above correctly.

The results are the same whether the C++ function accepts arguments by value or reference, and whether or not `const` is used.

Passing bytes to C++

A Python `bytes` object will be passed to C++ functions that accept `std::string` or `char*` without conversion. In order to make a function *only* accept bytes (and not `str`), declare it as taking a `py::bytes` argument.

11.2.2 Returning C++ strings to Python

When a C++ function returns a `std::string` or `char*` to a Python caller, `pybind11` will assume that the string is valid UTF-8 and will decode it to a native Python `str`, using the same API as Python uses to perform `bytes` `decode(\'utf-8\')`. If this implicit conversion fails, `pybind11` will raise a `UnicodeDecodeError`.

```cpp
m.def("std_string_return",
    []() {
        return std::string("This string needs to be UTF-8 encoded");
    }
);
```

```python
>>> isinstance(example.std_string_return(), str)
True
```

Because UTF-8 is inclusive of pure ASCII, there is never any issue with returning a pure ASCII string to Python. If there is any possibility that the string is not pure ASCII, it is necessary to ensure the encoding is valid UTF-8.

Warning: Implicit conversion assumes that a returned `char*` is null-terminated. If there is no null terminator a buffer overrun will occur.
Explicit conversions

If some C++ code constructs a `std::string` that is not a UTF-8 string, one can perform a explicit conversion and return a `py::str` object. Explicit conversion has the same overhead as implicit conversion.

```cpp
// This uses the Python C API to convert Latin-1 to Unicode
m.def("str_output",
    []() {
        std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
        py::str py_s = PyUnicode_DecodeLatin1(s.data(), s.length());
        return py_s;
    }
);

>>> str_output()
'Send your résumé to Alice in HR'
```

The Python C API provides several built-in codecs. One could also use a third party encoding library such as libiconv to transcode to UTF-8.

Return C++ strings without conversion

If the data in a C++ `std::string` does not represent text and should be returned to Python as `bytes`, then one can return the data as a `py::bytes` object.

```cpp
m.def("return_bytes",
    []() {
        std::string s("\xba\xda\xba\xda"); // Not valid UTF-8
        return py::bytes(s); // Return the data without transcoding
    }
);

>>> example.return_bytes()
'b'\xba\xda\xba\xda'
```

Note the asymmetry: pybind11 will convert `bytes` to `std::string` without encoding, but cannot convert `std::string` back to `bytes` implicitly.

```cpp
m.def("asymmetry",
    [](std::string s) { // Accepts str or bytes from Python
        return s; // Looks harmless, but implicitly converts to str
    }
);

>>> isinstance(example.asymmetry(b"have some bytes"), str)
True

>>> example.asymmetry(b"\xba\xda\xba\xda") # invalid utf-8 as bytes
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start␣→byte
```
11.2.3 Wide character strings

When a Python `str` is passed to a C++ function expecting `std::wstring`, `wchar_t*`, `std::u16string` or `std::u32string`, the `str` will be encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each type, in the platform’s native endianness. When strings of these types are returned, they are assumed to contain valid UTF-16 or UTF-32, and will be decoded to Python `str`.

```cpp
#define UNICODE
#include <windows.h>

m.def("set_window_text",
      [](HWND hwnd, std::wstring s) {
        // Call SetWindowText with null-terminated UTF-16 string
        ::SetWindowText(hwnd, s.c_str());
      });

m.def("get_window_text",
      [](HWND hwnd) {
        const int buffer_size = ::GetWindowTextLength(hwnd) + 1;
        auto buffer = std::make_unique<wchar_t[]>(buffer_size);
        ::GetWindowText(hwnd, buffer.data(), buffer_size);
        std::wstring text(buffer.get());
        // wstring will be converted to Python str
        return text;
      });
```

Strings in multibyte encodings such as Shift-JIS must transcoded to a UTF-8/16/32 before being returned to Python.

11.2.4 Character literals

C++ functions that accept character literals as input will receive the first character of a Python `str` as their input. If the string is longer than one Unicode character, trailing characters will be ignored.

When a character literal is returned from C++ (such as a `char` or a `wchar_t`), it will be converted to a `str` that represents the single character.

```cpp
m.def("pass_char", [](char c) { return c; });
m.def("pass_wchar", [](wchar_t w) { return w; });

>>> example.pass_char("A")
'A'

While C++ will cast integers to character types (char c = 0x65;), pybind11 does not convert Python integers to characters implicitly. The Python function `chr()` can be used to convert integers to characters.

```python
>>> example.pass_char(0x65)
TypeError

>>> example.pass_char(chr(0x65))
'A'
```
If the desire is to work with an 8-bit integer, use `int8_t` or `uint8_t` as the argument type.

**Grapheme clusters**

A single grapheme may be represented by two or more Unicode characters. For example ‘é’ is usually represented as U+00E9 but can also be expressed as the combining character sequence U+0065 U+0301 (that is, the letter ‘e’ followed by a combining acute accent). The combining character will be lost if the two-character sequence is passed as an argument, even though it renders as a single grapheme.

```python
>>> example.pass_wchar("é")
'é'

>>> combining_e_acute = "e" + "\u0301"

>>> combining_e_acute
'e''

>>> combining_e_acute == "é"
False

>>> example.pass_wchar(combining_e_acute)
'e'
```

Normalizing combining characters before passing the character literal to C++ may resolve some of these issues:

```python
>>> example.pass_wchar(unicodedata.normalize("NFC", combining_e_acute))
'é'
```

In some languages (Thai for example), there are graphemes that cannot be expressed as a single Unicode code point, so there is no way to capture them in a C++ character type.

### 11.2.5 C++17 string views

C++17 string views are automatically supported when compiling in C++17 mode. They follow the same rules for encoding and decoding as the corresponding STL string type (for example, a `std::u16string_view` argument will be passed UTF-16-encoded data, and a returned `std::string_view` will be decoded as UTF-8).

### 11.2.6 References

- The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)
- C++ - Using STL Strings at Win32 API Boundaries
11.3 STL containers

11.3.1 Automatic conversion

When including the additional header file pybind11/stl.h, conversions between std::vector<>, std::deque<>, std::list<>, std::array<>, std::valarray<>, std::set<>, std::unordered_set<>, and std::map<>, std::unordered_map<>, and the Python list, set, and dict data structures are automatically enabled. The types std::pair<>, std::tuple<>, std::set<>, and std::unordered_set<>, and std::map<>, and std::unordered_map<>, and the Python list, set, and dict data structures are automatically enabled. The types std::pair<>, std::tuple<>, and std::array<>, std::valarray<>, std::set<>, and std::unordered_set<>, and std::map<>, and std::unordered_map<>, are already supported out of the box with just the core pybind11/pybind11.h header.

The major downside of these implicit conversions is that containers must be converted (i.e. copied) on every Python->C++ and C++->Python transition, which can have implications on the program semantics and performance. Please read the next sections for more details and alternative approaches that avoid this.

Note: Arbitrary nesting of any of these types is possible.

See also:
The file tests/test_stl.cpp contains a complete example that demonstrates how to pass STL data types in more detail.

11.3.2 C++17 library containers

The pybind11/stl.h header also includes support for std::optional<>, std::variant<>, and std::optional<>, std::variant<>. These require a C++17 compiler and standard library. In C++14 mode, std::optional<>, std::variant<>, is supported if available.

Various versions of these containers also exist for C++11 (e.g. in Boost). pybind11 provides an easy way to specialize the type_caster for such types:

```
// `boost::optional` as an example -- can be any `std::optional`-like container
namespace pybind11 { namespace detail {
 template <typename T>
 struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
}}
```

The above should be placed in a header file and included in all translation units where automatic conversion is needed. Similarly, a specialization can be provided for custom variant types:

```
// `boost::variant` as an example -- can be any `std::variant`-like container
namespace pybind11 { namespace detail {
 template <typename... Ts>
 struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};

 // Specifies the function used to visit the variant -- `apply_visitor` instead of `visit`
 template <>
 struct visit_helper<boost::variant> {
 template <typename... Args>
 static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
 return boost::apply_visitor(args...);
 }
 };
}} // namespace pybind11::detail
```
The \texttt{visit}\_\texttt{helper} specialization is not required if your \texttt{name::variant} provides a \texttt{name::visit()} function. For any other function name, the specialization must be included to tell \texttt{pybind11} how to visit the variant.

\begin{quote}
\textbf{Warning:} When converting a \texttt{variant} type, \texttt{pybind11} follows the same rules as when determining which function overload to call (\textit{Overload resolution order}), and so the same caveats hold. In particular, the order in which the variant’s alternatives are listed is important, since \texttt{pybind11} will try conversions in this order. This means that, for example, when converting \texttt{variant<int, bool>}, the \texttt{bool} variant will never be selected, as any Python \texttt{bool} is already an \texttt{int} and is convertible to a C++ \texttt{int}. Changing the order of alternatives (and using \texttt{variant<bool, int>}, in this example) provides a solution.
\end{quote}

\begin{quote}
\textbf{Note:} \texttt{pybind11} only supports the modern implementation of \texttt{boost::variant} which makes use of variadic templates. This requires Boost 1.56 or newer.
\end{quote}

### 11.3.3 Making opaque types

\texttt{pybind11} heavily relies on a template matching mechanism to convert parameters and return values that are constructed from STL data types such as vectors, linked lists, hash tables, etc. This even works in a recursive manner, for instance to deal with lists of hash maps of pairs of elementary and custom types, etc.

However, a fundamental limitation of this approach is that internal conversions between Python and C++ types involve a copy operation that prevents pass-by-reference semantics. What does this mean?

Suppose we bind the following function

\begin{verbatim}
void append_1(std::vector<int> &v) {
    v.push_back(1);
}
\end{verbatim}

and call it from Python, the following happens:

\begin{verbatim}
>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]
\end{verbatim}

As you can see, when passing STL data structures by reference, modifications are not propagated back the Python side. A similar situation arises when exposing STL data structures using the \texttt{def\_readwrite} or \texttt{def\_readonly} functions:

\begin{verbatim}
/* ... definition ... */

class MyClass {
    std::vector<int> contents;
};

/* ... binding code ... */

py::class_\texttt{<MyClass>\texttt{<}}(m, "MyClass")
    .def(py::init<>())
    .def\_\texttt{readwrite("contents", \&MyClass::contents});
\end{verbatim}

In this case, properties can be read and written in their entirety. However, an append operation involving such a list type has no effect:
```python
>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]
```

Finally, the involved copy operations can be costly when dealing with very large lists. To deal with all of the above situations, pybind11 provides a macro named `PYBIND11_MAKE_OPAQUE(T)` that disables the template-based conversion machinery of types, thus rendering them opaque. The contents of opaque objects are never inspected or extracted, hence they can be passed by reference. For instance, to turn `std::vector<int>` into an opaque type, add the declaration

```
PYBIND11_MAKE_OPAQUE(std::vector<int>);
```

before any binding code (e.g. invocations to `class_::def()`, etc.). This macro must be specified at the top level (and outside of any namespaces), since it adds a template instantiation of `type_caster`. If your binding code consists of multiple compilation units, it must be present in every file (typically via a common header) preceding any usage of `std::vector<int>`. Opaque types must also have a corresponding `class_` declaration to associate them with a name in Python, and to define a set of available operations, e.g.:

```
py::class_<std::vector<int>>(m, "IntVector")
 .def(py::init<>())
 .def("clear", &std::vector<int>::clear)
 .def("pop_back", &std::vector<int>::pop_back)
 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
 .def("__iter__", std::vector<int> &v) {
 return py::make_iterator(v.begin(), v.end());
 }, py::keep_alive<0, 1>() /* Keep vector alive while iterator is used */
 // ...
```

See also:
The file `tests/test_opaque_types.cpp` contains a complete example that demonstrates how to create and expose opaque types using pybind11 in more detail.

### 11.3.4 Binding STL containers

The ability to expose STL containers as native Python objects is a fairly common request, hence pybind11 also provides an optional header file named `pybind11/stl_bind.h` that does exactly this. The mapped containers try to match the behavior of their native Python counterparts as much as possible.

The following example showcases usage of `pybind11/stl_bind.h`:

```
// Don't forget this
#include <pybind11/stl_bind.h>

PYBIND11_MAKE_OPAQUE(std::vector<int>);
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);

// ...

// later in binding code:
```

(continues on next page)
When binding STL containers pybind11 considers the types of the container’s elements to decide whether the container should be confined to the local module (via the Module-local class bindings feature). If the container element types are anything other than already-bound custom types bound without py::module_local() the container binding will have py::module_local() applied. This includes converting types such as numeric types, strings, Eigen types; and types that have not yet been bound at the time of the stl container binding. This module-local binding is designed to avoid potential conflicts between module bindings (for example, from two separate modules each attempting to bind std::vector<int> as a python type).

It is possible to override this behavior to force a definition to be either module-local or global. To do so, you can pass the attributes py::module_local() (to make the binding module-local) or py::module_local(false) (to make the binding global) into the py::bind_vector or py::bind_map arguments:

```cpp
py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));
```

Note, however, that such a global binding would make it impossible to load this module at the same time as any other pybind module that also attempts to bind the same container type (std::vector<int> in the above example).

See Module-local class bindings for more details on module-local bindings.

See also:

The file tests/test_stl_binders.cpp shows how to use the convenience STL container wrappers.

## 11.4 Functional

The following features must be enabled by including pybind11/functional.h.

### 11.4.1 Callbacks and passing anonymous functions

The C++11 standard brought lambda functions and the generic polymorphic function wrapper std::function<> to the C++ programming language, which enable powerful new ways of working with functions. Lambda functions come in two flavors: stateless lambda function resemble classic function pointers that link to an anonymous piece of code, while stateful lambda functions additionally depend on captured variables that are stored in an anonymous lambda closure object.

Here is a simple example of a C++ function that takes an arbitrary function (stateful or stateless) with signature `int -> int` as an argument and runs it with the value 10.

```cpp
int func_arg(const std::function<int(int)> &f) {
 return f(10);
}
```

The example below is more involved: it takes a function of signature `int -> int` and returns another function of the same kind. The return value is a stateful lambda function, which stores the value `f` in the capture object and adds 1 to its return value upon execution.

```cpp
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
 return [f](int i) {
 return f(i) + 1;
 };
}
```
This example demonstrates using python named parameters in C++ callbacks which requires using `py::cpp_function` as a wrapper. Usage is similar to defining methods of classes:

```cpp
py::cpp_function func_cpp() {
 return py::cpp_function([](int i) { return i+1; },
 py::arg("number"));
}
```

After including the extra header file `pybind11/functional.h`, it is almost trivial to generate binding code for all of these functions.

```cpp
#include <pybind11/functional.h>

PYBIND11_MODULE(example, m) {
 m.def("func_arg", &func_arg);
 m.def("func_ret", &func_ret);
 m.def("func_cpp", &func_cpp);
}
```

The following interactive session shows how to call them from Python.

```
$ python
>>> import example
>>> def square(i):
... return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)
17L
>>> plus_1 = func_cpp()
>>> plus_1(number=43)
44L
```

**Warning:** Keep in mind that passing a function from C++ to Python (or vice versa) will instantiate a piece of wrapper code that translates function invocations between the two languages. Naturally, this translation increases the computational cost of each function call somewhat. A problematic situation can arise when a function is copied back and forth between Python and C++ many times in a row, in which case the underlying wrappers will accumulate correspondingly. The resulting long sequence of C++ -> Python -> C++ -> ... roundtrips can significantly decrease performance.

There is one exception: `pybind11` detects cases where a stateless function (i.e. a function pointer or a lambda function without captured variables) is passed as an argument to another C++ function exposed in Python. In this case, there is no overhead. `Pybind11` will extract the underlying C++ function pointer from the wrapped function to sidestep a potential C++ -> Python -> C++ roundtrip. This is demonstrated in `tests/test_callbacks.cpp`.

**Note:** This functionality is very useful when generating bindings for callbacks in C++ libraries (e.g. GUI libraries,
asynchronous networking libraries, etc.).

The file tests/test_callbacks.cpp contains a complete example that demonstrates how to work with callbacks and anonymous functions in more detail.

## 11.5 Chrono

When including the additional header file pybind11/chrono.h conversions from C++11 chrono datatypes to python datetime objects are automatically enabled. This header also enables conversions of python floats (often from sources such as `time.monotonic()`, `time.perf_counter()` and `time.process_time()`) into durations.

### 11.5.1 An overview of clocks in C++11

A point of confusion when using these conversions is the differences between clocks provided in C++11. There are three clock types defined by the C++11 standard and users can define their own if needed. Each of these clocks have different properties and when converting to and from python will give different results.

The first clock defined by the standard is `std::chrono::system_clock`. This clock measures the current date and time. However, this clock changes with updates to the operating system time. For example, if your time is synchronised with a time server this clock will change. This makes this clock a poor choice for timing purposes but good for measuring the wall time.

The second clock defined in the standard is `std::chrono::steady_clock`. This clock ticks at a steady rate and is never adjusted. This makes it excellent for timing purposes, however the value in this clock does not correspond to the current date and time. Often this clock will be the amount of time your system has been on, although it does not have to be. This clock will never be the same clock as the system clock as the system clock can change but steady clocks cannot.

The third clock defined in the standard is `std::chrono::high_resolution_clock`. This clock is the clock that has the highest resolution out of the clocks in the system. It is normally a typedef to either the system clock or the steady clock but can be its own independent clock. This is important as when using these conversions as the types you get in python for this clock might be different depending on the system. If it is a typedef of the system clock, python will get datetime objects, but if it is a different clock they will be timedelta objects.

### 11.5.2 Provided conversions

#### C++ to Python

- `std::chrono::system_clock::time_point -> datetime.datetime` System clock times are converted to python datetime instances. They are in the local timezone, but do not have any timezone information attached to them (they are naive datetime objects).

- `std::chrono::duration -> datetime.timedelta` Durations are converted to timedeltas, any precision in the duration greater than microseconds is lost by rounding towards zero.

- `std::chrono::[other_clocks]::time_point -> datetime.timedelta` Any clock time that is not the system clock is converted to a time delta. This timedelta measures the time from the clocks epoch to now.
Python to C++

- `datetime.datetime` or `datetime.date` or `datetime.time` → `std::chrono::system_clock::time_point`
  Date/time objects are converted into system clock timepoints. Any timezone information is ignored and the type is treated as a naive object.

- `datetime.timedelta` → `std::chrono::duration`
  Time delta are converted into durations with microsecond precision.

- `datetime.timedelta` → `std::chrono::[other_clocks]::time_point`
  Time deltas that are converted into clock timepoints are treated as the amount of time from the start of the clocks epoch.

- `float` → `std::chrono::duration`
  Floats that are passed to C++ as durations be interpreted as a number of seconds. These will be converted to the duration using `duration_cast` from the float.

- `float` → `std::chrono::[other_clocks]::time_point`
  Floats that are passed to C++ as time points will be interpreted as the number of seconds from the start of the clocks epoch.

11.6 Eigen

Eigen is C++ header-based library for dense and sparse linear algebra. Due to its popularity and widespread adoption, pybind11 provides transparent conversion and limited mapping support between Eigen and Scientific Python linear algebra data types.

To enable the built-in Eigen support you must include the optional header file `pybind11/eigen.h`.

11.6.1 Pass-by-value

When binding a function with ordinary Eigen dense object arguments (for example, `Eigen::MatrixXd`), pybind11 will accept any input value that is already (or convertible to) a `numpy.ndarray` with dimensions compatible with the Eigen type, copy its values into a temporary Eigen variable of the appropriate type, then call the function with this temporary variable.

Sparse matrices are similarly copied to or from `scipy.sparse.csr_matrix` / `scipy.sparse.csc_matrix` objects.

11.6.2 Pass-by-reference

One major limitation of the above is that every data conversion implicitly involves a copy, which can be both expensive (for large matrices) and disallows binding functions that change their (Matrix) arguments. Pybind11 allows you to work around this by using Eigen’s `Eigen::Ref<MatrixType>` class much as you would when writing a function taking a generic type in Eigen itself (subject to some limitations discussed below).

When calling a bound function accepting a `Eigen::Ref<const MatrixType>` type, pybind11 will attempt to avoid copying by using an `Eigen::Map` object that maps into the source `numpy.ndarray` data: this requires both that the data types are the same (e.g. `dtype='float64'` and `MatrixType::Scalar` is `double`); and that the storage is layout compatible. The latter limitation is discussed in detail in the section below, and requires careful consideration: by default, `numpy` matrices and Eigen matrices are not storage compatible.

If the `numpy` matrix cannot be used as is (either because its types differ, e.g. passing an array of integers to an Eigen parameter requiring doubles, or because the storage is incompatible), pybind11 makes a temporary copy and passes the copy instead.

When a bound function parameter is instead `Eigen::Ref<MatrixType>` (note the lack of `const`), pybind11 will only allow the function to be called if it can be mapped and if the `numpy` array is writeable (that is, its `flags.writeable`
is true). Any access (including modification) made to the passed variable will be transparently carried out directly on the `numpy.ndarray`.

This means you can write code such as the following and have it work as expected:

```cpp
void scale_by_2(Eigen::Ref<Eigen::VectorXd> v) {
 v *= 2;
}
```

Note, however, that you will likely run into limitations due to `numpy` and Eigen's different default storage order for data; see the below section on Storage orders for details on how to bind code that won’t run into such limitations.

**Note:** Passing by reference is not supported for sparse types.

### 11.6.3 Returning values to Python

When returning an ordinary dense Eigen matrix type to `numpy` (e.g. `Eigen::MatrixXd` or `Eigen::RowVectorXf`) `pybind11` keeps the matrix and returns a `numpy` array that directly references the Eigen matrix: no copy of the data is performed. The `numpy` array will have `array.flags.owndata` set to `False` to indicate that it does not own the data, and the lifetime of the stored Eigen matrix will be tied to the returned array.

If you bind a function with a non-reference, `const` return type (e.g. `const Eigen::MatrixXd`), the same thing happens except that `pybind11` also sets the `numpy` array’s `writeable` flag to false.

If you return an lvalue reference or pointer, the usual `pybind11` rules apply, as dictated by the binding function’s return value policy (see the documentation on Return value policies for full details). That means, without an explicit return value policy, lvalue references will be copied and pointers will be managed by `pybind11`. In order to avoid copying, you should explicitly specify an appropriate return value policy, as in the following example:

```cpp
class MyClass {
 Eigen::MatrixXd big_mat = Eigen::MatrixXd::Zero(10000, 10000);

public:
 Eigen::MatrixXd &getMatrix() { return big_mat; }
 const Eigen::MatrixXd &viewMatrix() { return big_mat; }
};

// Later, in binding code:
py::class_<MyClass>(m, "MyClass")
 .def(py::init<>())
 .def("copy_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal) // Makes a copy!
 .def("get_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal)
 .def("view_matrix", &MyClass::viewMatrix, py::return_value_policy::reference_internal);
```

```python
a = MyClass()
m = a.get_matrix() # flags.writeable = True, flags.owndata = False
v = a.view_matrix() # flags.writeable = False, flags.owndata = False
c = a.copy_matrix() # flags.writeable = True, flags.owndata = True
m[5,6] and v[5,6] refer to the same element, c[5,6] does not.
```

Note in this example that `py::return_value_policy::reference_internal` is used to tie the life of the `MyClass` object to the life of the returned arrays.

### 11.6. Eigen
You may also return an `Eigen::Ref`, `Eigen::Map` or other map-like Eigen object (for example, the return value of `matrix.block()` and related methods) that map into a dense Eigen type. When doing so, the default behaviour of pybind11 is to simply reference the returned data: you must take care to ensure that this data remains valid! You may ask pybind11 to explicitly copy such a return value by using the `py::return_value_policy::copy` policy when binding the function. You may also use `py::return_value_policy::reference_internal` or a `py::keep_alive` to ensure the data stays valid as long as the returned numpy array does.

When returning such a reference of map, pybind11 additionally respects the readonly-status of the returned value, marking the numpy array as non-writeable if the reference or map was itself read-only.

**Note:** Sparse types are always copied when returned.

### 11.6.4 Storage orders

Passing arguments via `Eigen::Ref` has some limitations that you must be aware of in order to effectively pass matrices by reference. First and foremost is that the default `Eigen::Ref<MatrixType>` class requires contiguous storage along columns (for column-major types, the default in Eigen) or rows if `MatrixType` is specifically an `Eigen::RowMajor` storage type. The former, Eigen’s default, is incompatible with numpy’s default row-major storage, and so you will not be able to pass numpy arrays to Eigen by reference without making one of two changes.

(Note that this does not apply to vectors (or column or row matrices): for such types the “row-major” and “column-major” distinction is meaningless).

The first approach is to change the use of `Eigen::Ref<MatrixType>` to the more general `Eigen::Ref<MatrixType, 0, Eigen::Stride<Dynamic, Dynamic>>` (or similar type with a fully dynamic stride type in the third template argument). Since this is a rather cumbersome type, pybind11 provides a `py::EigenDRef<MatrixType>` type alias for your convenience (along with `EigenDMap` for the equivalent Map, and `EigenDStride` for just the stride type).

This type allows Eigen to map into any arbitrary storage order. This is not the default in Eigen for performance reasons: contiguous storage allows vectorization that cannot be done when storage is not known to be contiguous at compile time. The default `Eigen::Ref` stride type allows non-contiguous storage along the outer dimension (that is, the rows of a column-major matrix or columns of a row-major matrix), but not along the inner dimension.

This type, however, has the added benefit of also being able to map numpy array slices. For example, the following (contrived) example uses Eigen with a numpy slice to multiply by 2 all coefficients that are both on even rows (0, 2, 4, ...) and in columns 2, 5, or 8:

```cpp
m.def("scale", [](py::EigenDRef<Eigen::MatrixXd> m, double c) { m *= c; });

a = np.array(...) scale_by_2(myarray[0::2, 2:9:3])
```

The second approach to avoid copying is more intrusive: rearranging the underlying data types to not run into the non-contiguous storage problem in the first place. In particular, that means using matrices with `Eigen::RowMajor` storage, where appropriate, such as:

```cpp
using RowMatrixXd = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// Use RowMatrixXd instead of MatrixXd
```

Now bound functions accepting `Eigen::Ref<RowMatrixXd>` arguments will be callable with numpy’s (default) arrays without involving a copying.

---

11.6. Eigen
You can, alternatively, change the storage order that numpy arrays use by adding the `order='F'` option when creating an array:

```python
myarray = np.array(source, order="F")
```

Such an object will be passable to a bound function accepting an `Eigen::Ref<MatrixXd>` (or similar column-major Eigen type).

One major caveat with this approach, however, is that it is not entirely as easy as simply flipping all Eigen or numpy usage from one to the other: some operations may alter the storage order of a numpy array. For example, `a2 = array.transpose()` results in `a2` being a view of `array` that references the same data, but in the opposite storage order!

While this approach allows fully optimized vectorized calculations in Eigen, it cannot be used with array slices, unlike the first approach.

When returning a matrix to Python (either a regular matrix, a reference via `Eigen::Ref<>`, or a map/block into a matrix), no special storage consideration is required: the created numpy array will have the required stride that allows numpy to properly interpret the array, whatever its storage order.

### 11.6.5 Failing rather than copying

The default behaviour when binding `Eigen::Ref<const MatrixType>` Eigen references is to copy matrix values when passed a numpy array that does not conform to the element type of `MatrixType` or does not have a compatible stride layout. If you want to explicitly avoid copying in such a case, you should bind arguments using the `py::arg().noconvert()` annotation (as described in the Non-converting arguments documentation).

The following example shows an example of arguments that don't allow data copying to take place:

```python
// The method and function to be bound:
class MyClass {
 // ...
 double some_method(const Eigen::Ref<const MatrixXd> &matrix) {
 /* ... */
 }
 float some_function(const Eigen::Ref<const MatrixXf> &big,
 const Eigen::Ref<const MatrixXf> &small) {
 // ...
 }

 // The associated binding code:
 using namespace pybind11::literals; // for "arg"_a
 py::class_<MyClass>(m, "MyClass")
 // ... other class definitions
 .def("some_method", &MyClass::some_method, py::arg().noconvert());
 m.def("some_function", &some_function,
 "big"_a.noconvert(), // <- Don't allow copying for this arg
 "small"_a // <- This one can be copied if needed
);
```

With the above binding code, attempting to call the the `some_method(m)` method on a `MyClass` object, or attempting to call `some_function(m, m2)` will raise a `RuntimeError` rather than making a temporary copy of the array. It will, however, allow the `m2` argument to be copied into a temporary if necessary.

Note that explicitly specifying `.noconvert()` is not required for mutable Eigen references (e.g. `Eigen::Ref<MatrixXd>` without `const` on the `MatrixXd`): mutable references will never be called with a temporary copy.
11.6.6 Vectors versus column/row matrices

Eigen and numpy have fundamentally different notions of a vector. In Eigen, a vector is simply a matrix with the number of columns or rows set to 1 at compile time (for a column vector or row vector, respectively). NumPy, in contrast, has comparable 2-dimensional 1xN and Nx1 arrays, but also has 1-dimensional arrays of size N.

When passing a 2-dimensional 1xN or Nx1 array to Eigen, the Eigen type must have matching dimensions: That is, you cannot pass a 2-dimensional Nx1 numpy array to an Eigen value expecting a row vector, or a 1xN numpy array as a column vector argument.

On the other hand, pybind11 allows you to pass 1-dimensional arrays of length N as Eigen parameters. If the Eigen type can hold a column vector of length N it will be passed as such a column vector. If not, but the Eigen type constraints will accept a row vector, it will be passed as a row vector. (The column vector takes precedence when both are supported, for example, when passing a 1D numpy array to a MatrixXd argument). Note that the type need not be explicitly a vector: it is permitted to pass a 1D numpy array of size 5 to an Eigen Matrix<double, Dynamic, 5>: you would end up with a 1x5 Eigen matrix. Passing the same to an Eigen::MatrixXd would result in a 5x1 Eigen matrix.

When returning an Eigen vector to numpy, the conversion is ambiguous: a row vector of length 4 could be returned as either a 1D array of length 4, or as a 2D array of size 1x4. When encountering such a situation, pybind11 compromises by considering the returned Eigen type: if it is a compile-time vector—that is, the type has either the number of rows or columns set to 1 at compile time—pybind11 converts to a 1D numpy array when returning the value. For instances that are a vector only at run-time (e.g. MatrixXd, Matrix<float, Dynamic, 4>), pybind11 returns the vector as a 2D array to numpy. If this isn’t what you want, you can use array.reshape(...) to get a view of the same data in the desired dimensions.

See also:
The file tests/test_eigen.cpp contains a complete example that shows how to pass Eigen sparse and dense data types in more detail.

11.7 Custom type casters

In very rare cases, applications may require custom type casters that cannot be expressed using the abstractions provided by pybind11, thus requiring raw Python C API calls. This is fairly advanced usage and should only be pursued by experts who are familiar with the intricacies of Python reference counting.

The following snippets demonstrate how this works for a very simple inty type that that should be convertible from Python types that provide a __int__(self) method.

```cpp
struct inty { long long_value;
};

void print(inty s) {
 std::cout << s.long_value << std::endl;
}
```

The following Python snippet demonstrates the intended usage from the Python side:

```python
class A:
 def __int__(self):
 return 123

from example import print
print(A())
```
To register the necessary conversion routines, it is necessary to add an instantiation of the `pybind11::detail::type_caster<T>` template. Although this is an implementation detail, adding an instantiation of this type is explicitly allowed.

```cpp
namespace pybind11 { namespace detail {
 template <> struct type_caster<inty> {
 public:
 /**
 * This macro establishes the name 'inty' in
 * function signatures and declares a local variable
 * 'value' of type inty
 */
 PYBIND11_TYPE_CASTER(inty, const_name("inty"));

 /**
 * Conversion part 1 (Python->C++): convert a PyObject into an inty
 * instance or return false upon failure. The second argument
 * indicates whether implicit conversions should be applied.
 */
 bool load(handle src, bool) {
 /* Extract PyObject from handle */
 PyObject *source = src.ptr();
 /* Try converting into a Python integer value */
 PyObject *tmp = PyNumber_Long(source);
 if (!tmp)
 return false;
 /* Now try to convert into a C++ int */
 value.long_value = PyLong_AsLong(tmp);
 Py_DECREF(tmp);
 /* Ensure return code was OK (to avoid out-of-range errors etc) */
 return !(value.long_value == -1 && PyErr_Occurred());
 }

 /**
 * Conversion part 2 (C++ -> Python): convert an inty instance into
 * a Python object. The second and third arguments are used to
 * indicate the return value policy and parent object (for
 * "return_value_policy::reference_internal") and are generally
 * ignored by implicit casters.
 */
 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
 return PyLong_FromLong(src.long_value);
 }
 } // namespace pybind11::detail
}} // namespace pybind11
```

Note: A `type_caster<T>` defined with `PYBIND11_TYPE_CASTER(T, ...)` requires that T is default-constructible (value is first default constructed and then `load()` assigns to it).
**Warning:** When using custom type casters, it’s important to declare them consistently in every compilation unit of the Python extension module. Otherwise, undefined behavior can ensue.
PYTHoN C++ INTERFACE

pybind11 exposes Python types and functions using thin C++ wrappers, which makes it possible to conveniently call Python code from C++ without resorting to Python’s C API.

12.1 Python types

12.1.1 Available wrappers

All major Python types are available as thin C++ wrapper classes. These can also be used as function parameters – see *Python objects as arguments*.

Available types include handle, object, bool, int, float, str, bytes, tuple, list, dict, slice, none, capsule, iterable, iterator, function, buffer, array, and array_t.

**Warning:** Be sure to review the *Gotchas* before using this heavily in your C++ API.

12.1.2 Instantiating compound Python types from C++

Dictionaries can be initialized in the dict constructor:

```cpp
using namespace pybind11::literals; // to bring in the '_a' literal
py::dict d("spam"_a=py::none(), "eggs"_a=42);
```

A tuple of python objects can be instantiated using py::make_tuple():

```cpp
py::tuple tup = py::make_tuple(42, py::none(), "spam");
```

Each element is converted to a supported Python type. A simple namespace can be instantiated using

```cpp
using namespace pybind11::literals; // to bring in the '_a' literal
py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);
```

Attributes on a namespace can be modified with the py::delattr(), py::getattr(), and py::setattr() functions. Simple namespaces can be useful as lightweight stand-ins for class instances.
12.1.3 Casting back and forth

In this kind of mixed code, it is often necessary to convert arbitrary C++ types to Python, which can be done using `py::cast()`:

```cpp
MyClass *cls = ...;
py::object obj = py::cast(cls);
```

The reverse direction uses the following syntax:

```cpp
py::object obj = ...;
MyClass *cls = obj.cast<MyClass *>();
```

When conversion fails, both directions throw the exception `cast_error`.

12.1.4 Accessing Python libraries from C++

It is also possible to import objects defined in the Python standard library or available in the current Python environment (`sys.path`) and work with these in C++.

This example obtains a reference to the Python `Decimal` class.

```cpp
// Equivalent to "from decimal import Decimal"
py::object Decimal = py::module_::import("decimal").attr("Decimal");
```

```cpp
// Try to import scipy
py::object scipy = py::module_::import("scipy");
return scipy.attr("__version__");
```

12.1.5 Calling Python functions

It is also possible to call Python classes, functions and methods via `operator()`.

```cpp
// Construct a Python object of class Decimal
py::object pi = Decimal("3.14159");
```

```cpp
// Use Python to make our directories
py::object os = py::module_::import("os");
py::object makedirs = os.attr("makedirs");
makedirs("/tmp/path/to/somewhere");
```

One can convert the result obtained from Python to a pure C++ version if a `py::class_` or type conversion is defined.

```cpp
py::function f = <...>;
py::object result_py = f(1234, "hello", some_instance);
MyClass &result = result_py.cast<MyClass>();
```
12.1.6 Calling Python methods

To call an object’s method, one can again use `.attr` to obtain access to the Python method.

```cpp
// Calculate e^π in decimal
py::object exp_pi = pi.attr("exp")();
py::print(py::str(exp_pi));
```

In the example above `pi.attr("exp")` is a bound method: it will always call the method for that same instance of the class. Alternately one can create an unbound method via the Python class (instead of instance) and pass the self object explicitly, followed by other arguments.

```cpp
py::object decimal_exp = Decimal.attr("exp");
```

// Compute the e^n for n=0..4
for (int n = 0; n < 5; n++) {
    py::print(decimal_exp(Decimal(n));
}

12.1.7 Keyword arguments

Keyword arguments are also supported. In Python, there is the usual call syntax:

```python
def f(number, say, to):
 ...
 # function code

f(1234, say="hello", to=some_instance) # keyword call in Python
```

In C++, the same call can be made using:

```
using namespace pybind11::literals; // to bring in the `_a` literal
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
```

12.1.8 Unpacking arguments

Unpacking of `*args` and `**kwargs` is also possible and can be mixed with other arguments:

```cpp
// * unpacking
py::tuple args = py::make_tuple(1234, "hello", some_instance);
f(*args);

// ** unpacking
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
f(**kwargs);

// mixed keywords, * and ** unpacking
py::tuple args = py::make_tuple(1234);
py::dict kwargs = py::dict("to"_a=some_instance);
f(*args, "say"_a="hello", **kwargs);
```

Generalized unpacking according to PEP448 is also supported:

12.1. Python types
See also:
The file tests/test_pytypes.cpp contains a complete example that demonstrates passing native Python types in more detail. The file tests/test_callbacks.cpp presents a few examples of calling Python functions from C++, including keywords arguments and unpacking.

12.1.9 Implicit casting

When using the C++ interface for Python types, or calling Python functions, objects of type `object` are returned. It is possible to invoke implicit conversions to subclasses like `dict`. The same holds for the proxy objects returned by `operator[]` or `obj.attr()`. Casting to subtypes improves code readability and allows values to be passed to C++ functions that require a specific subtype rather than a generic `object`.

```cpp
#include <pybind11/mumpy.h>
using namespace pybind11::literals;

py::module_ os = py::module_::import("os");
py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'

py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
py::dict environ = os.attr("environ");
py::print(py::repr(arr + py::int_(1)));
```

These implicit conversions are available for subclasses of `object`; there is no need to call `obj.cast()` explicitly as for custom classes, see `Casting back and forth`.

**Note:** If a trivial conversion via move constructor is not possible, both implicit and explicit casting (calling `obj.cast()`) will attempt a “rich” conversion. For instance, `py::list env = os.attr("environ");` will succeed and is equivalent to the Python code `env = list(os.environ)` that produces a list of the dict keys.

12.1.10 Handling exceptions

Python exceptions from wrapper classes will be thrown as a `py::error_already_set`. See `Handling exceptions from Python in C++` for more information on handling exceptions raised when calling C++ wrapper classes.
12.1.11 Gotchas

Default-Constructed Wrappers

When a wrapper type is default-constructed, it is not a valid Python object (i.e. it is not `py::none()`). It is simply the same as `PyObject*` null pointer. To check for this, use `static_cast<bool>(my_wrapper)`.

Assigning `py::none()` to wrappers

You may be tempted to use types like `py::str` and `py::dict` in C++ signatures (either pure C++, or in bound signatures), and assign them default values of `py::none()`. However, in a best case scenario, it will fail fast because `None` is not convertible to that type (e.g. `py::dict`), or in a worse case scenario, it will silently work but corrupt the types you want to work with (e.g. `py::str(py::none())` will yield "None" in Python).

12.2 NumPy

12.2.1 Buffer protocol

Python supports an extremely general and convenient approach for exchanging data between plugin libraries. Types can expose a buffer view\(^1\), which provides fast direct access to the raw internal data representation. Suppose we want to bind the following simplistic `Matrix` class:

```cpp
class Matrix {
public:
 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
 m_data = new float[rows*cols];
 }
 float *data() { return m_data; }
 size_t rows() const { return m_rows; }
 size_t cols() const { return m_cols; }
private:
 size_t m_rows, m_cols;
 float *m_data;
};
```

The following binding code exposes the `Matrix` contents as a buffer object, making it possible to cast Matrices into NumPy arrays. It is even possible to completely avoid copy operations with Python expressions like `np.array(matrix_instance, copy = False)`.

```cpp
py::class_<Matrix>(m, "Matrix", py::buffer_protocol()).
def_buffer([](Matrix &m) -> py::buffer_info {
 return py::buffer_info(
 m.data(), /* Pointer to buffer */
 sizeof(float), /* Size of one scalar */
 py::format_descriptor<float>::format(), /* Python struct-style format */
 2, /* Number of dimensions */
 { m.rows(), m.cols() }, /* Buffer dimensions */
 { sizeof(float) * m.cols() }, /* Strides (in bytes) for each index */
);
}
```

\(^1\) [http://docs.python.org/3/c-api/buffer.html](http://docs.python.org/3/c-api/buffer.html)
Supporting the buffer protocol in a new type involves specifying the special `py::buffer_protocol()` tag in the `py::class_` constructor and calling the `def_buffer()` method with a lambda function that creates a `py::buffer_info` description record on demand describing a given matrix instance. The contents of `py::buffer_info` mirror the Python buffer protocol specification.

```cpp
struct buffer_info {
 void *ptr;
 py::ssize_t itemsize;
 std::string format;
 py::ssize_t ndim;
 std::vector<py::ssize_t> shape;
 std::vector<py::ssize_t> strides;
};
```

To create a C++ function that can take a Python buffer object as an argument, simply use the type `py::buffer` as one of its arguments. Buffers can exist in a great variety of configurations, hence some safety checks are usually necessary in the function body. Below, you can see a basic example on how to define a custom constructor for the Eigen double precision matrix (`Eigen::MatrixXd`) type, which supports initialization from compatible buffer objects (e.g. a NumPy matrix).

```cpp
/* Bind MatrixXd (or some other Eigen type) to Python */
typedef Eigen::MatrixXd Matrix;

typedef Matrix::Scalar Scalar;
const expr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;

py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
 .def(py::init([](py::buffer b) {
 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;

 /* Request a buffer descriptor from Python */
 py::buffer_info info = b.request();

 /* Some sanity checks ... */
 if (info.format != py::format_descriptor<Scalar>::format())
 throw std::runtime_error("Incompatible format: expected a double array!");

 if (info.ndim != 2)
 throw std::runtime_error("Incompatible buffer dimension!");

 auto strides = Strides(
 info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
 info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));

 auto map = Eigen::Map<Matrix, 0, Strides>(
 static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);

 return Matrix(map);
 }));
```
For reference, the `def_buffer()` call for this Eigen data type should look as follows:

```cpp
def_buffer([](Matrix &m) -> py::buffer_info {
 return py::buffer_info(
 m.data(), /* Pointer to buffer */
 sizeof(Scalar), /* Size of one scalar */
 py::format_descriptor<Scalar>::format(), /* Python struct-style format */
 2, /* Number of dimensions */
 { m.rows(), m.cols() }, /* Buffer dimensions */
 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } /* Strides (in bytes) for each index */
);
});
```

For a much easier approach of binding Eigen types (although with some limitations), refer to the section on *Eigen*.

**See also:**
The file `tests/test_buffers.cpp` contains a complete example that demonstrates using the buffer protocol with `pybind11` in more detail.

### 12.2.2 Arrays

By exchanging `py::buffer` with `py::array` in the above snippet, we can restrict the function so that it only accepts NumPy arrays (rather than any type of Python object satisfying the buffer protocol).

In many situations, we want to define a function which only accepts a NumPy array of a certain data type. This is possible via the `py::array_t<T>` template. For instance, the following function requires the argument to be a NumPy array containing double precision values.

```cpp
void f(py::array_t<double> array);
```

When it is invoked with a different type (e.g. an integer or a list of integers), the binding code will attempt to cast the input into a NumPy array of the requested type. This feature requires the `pybind11/numpy.h` header to be included. Note that `pybind11/numpy.h` does not depend on the NumPy headers, and thus can be used without declaring a build-time dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.

Data in NumPy arrays is not guaranteed to be packed in a dense manner; furthermore, entries can be separated by arbitrary column and row strides. Sometimes, it can be useful to require a function to only accept dense arrays using either the C (row-major) or Fortran (column-major) ordering. This can be accomplished via a second template argument with values `py::array::c_style` or `py::array::f_style`.

```cpp
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
```

The `py::array::forcecast` argument is the default value of the second template parameter, and it ensures that non-conforming arguments are converted into an array satisfying the specified requirements instead of trying the next function overload.

There are several methods on arrays; the methods listed below under references work, as well as the following functions based on the NumPy API:

* `.dtype()` returns the type of the contained values.
* `.strides()` returns a pointer to the strides of the array (optionally pass an integer axis to get a number).
* `.flags()` returns the flag settings. `.writable()` and `.owndata()` are directly available.
• `.offset_at()` returns the offset (optionally pass indices).
• `.squeeze()` returns a view with length-1 axes removed.
• `.view(dtype)` returns a view of the array with a different dtype.
• `.reshape({i, j, ...})` returns a view of the array with a different shape. `.resize({...})` is also available.
• `.index_at(i, j, ...)` gets the count from the beginning to a given index.

There are also several methods for getting references (described below).

### 12.2.3 Structured types

In order for `py::array_t` to work with structured (record) types, we first need to register the memory layout of the type. This can be done via `PYBIND11_NUMPY_DTYPE` macro, called in the plugin definition code, which expects the type followed by field names:

```cpp
struct A {
 int x;
 double y;
};

struct B {
 int z;
 A a;
};

// ...
PYBIND11_MODULE(test, m) {
 // ...
 PYBIND11_NUMPY_DTYPE(A, x, y);
 PYBIND11_NUMPY_DTYPE(B, z, a);
 /* now both A and B can be used as template arguments to py::array_t */
}
```

The structure should consist of fundamental arithmetic types, `std::complex`, previously registered substructures, and arrays of any of the above. Both C++ arrays and `std::array` are supported. While there is a static assertion to prevent many types of unsupported structures, it is still the user’s responsibility to use only “plain” structures that can be safely manipulated as raw memory without violating invariants.

### 12.2.4 Vectorizing functions

Suppose we want to bind a function with the following signature to Python so that it can process arbitrary NumPy array arguments (vectors, matrices, general N-D arrays) in addition to its normal arguments:

```cpp
double my_func(int x, float y, double z);
```

After including the `pybind11/numpy.h` header, this is extremely simple:

```cpp
m.def("vectorized_func", py::vectorize(my_func));
```

Invoking the function like below causes 4 calls to be made to `my_func` with each of the array elements. The significant advantage of this compared to solutions like `numpy.vectorize()` is that the loop over the elements runs entirely on
the C++ side and can be crunched down into a tight, optimized loop by the compiler. The result is returned as a NumPy array of type `numpy.dtype.float64`.

```python
>>> x = np.array([[1, 3], [5, 7]])
>>> y = np.array([[2, 4], [6, 8]])
>>> z = 3
>>> result = vectorized_func(x, y, z)
```

The scalar argument `z` is transparently replicated 4 times. The input arrays `x` and `y` are automatically converted into the right types (they are of type `numpy.dtype.int64` but need to be `numpy.dtype.int32` and `numpy.dtype.float32`, respectively).

**Note:** Only arithmetic, complex, and POD types passed by value or by `const &` reference are vectorized; all other arguments are passed through as-is. Functions taking `rvalue` reference arguments cannot be vectorized.

In cases where the computation is too complicated to be reduced to `vectorize`, it will be necessary to create and access the buffer contents manually. The following snippet contains a complete example that shows how this works (the code is somewhat contrived, since it could have been done more simply using `vectorize`).

```cpp
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
 py::buffer_info buf1 = input1.request(), buf2 = input2.request();
 if (buf1.ndim != 1 || buf2.ndim != 1)
 throw std::runtime_error("Number of dimensions must be one");
 if (buf1.size != buf2.size)
 throw std::runtime_error("Input shapes must match");
 /* No pointer is passed, so NumPy will allocate the buffer */
 auto result = py::array_t<double>(buf1.size);
 py::buffer_info buf3 = result.request();
 double *ptr1 = static_cast<double*>(buf1.ptr);
 double *ptr2 = static_cast<double*>(buf2.ptr);
 double *ptr3 = static_cast<double*>(buf3.ptr);
 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
 ptr3[idx] = ptr1[idx] + ptr2[idx];
 return result;
}
PYBIND11_MODULE(test, m) {
 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
}
```
See also:
The file tests/test_numpy_vectorize.cpp contains a complete example that demonstrates using `vectorize()` in more detail.

### 12.2.5 Direct access

For performance reasons, particularly when dealing with very large arrays, it is often desirable to directly access array elements without internal checking of dimensions and bounds on every access when indices are known to be already valid. To avoid such checks, the `array` class and `array_t<T>` template class offer an unchecked proxy object that can be used for this unchecked access through the `unchecked<N>` and `mutable_unchecked<N>` methods, where `N` gives the required dimensionality of the array:

```cpp
m.def("sum_3d", [](py::array_t<double> x) {
 auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
 double sum = 0;
 for (py::ssize_t i = 0; i < r.shape(0); i++)
 for (py::ssize_t j = 0; j < r.shape(1); j++)
 for (py::ssize_t k = 0; k < r.shape(2); k++)
 sum += r(i, j, k);
 return sum;
});
m.def("increment_3d", [](py::array_t<double> x) {
 auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
 for (py::ssize_t i = 0; i < r.shape(0); i++)
 for (py::ssize_t j = 0; j < r.shape(1); j++)
 for (py::ssize_t k = 0; k < r.shape(2); k++)
 r(i, j, k) += 1.0;
}, py::arg().noconvert());
```

To obtain the proxy from an `array` object, you must specify both the data type and number of dimensions as template arguments, such as `auto r = myarray.mutable_unchecked<float, 2>();`.

If the number of dimensions is not known at compile time, you can omit the dimensions template parameter (i.e. calling `arr_t.unchecked()` or `arr.unchecked<T>()`). This will give you a proxy object that works in the same way, but results in less optimizable code and thus a small efficiency loss in tight loops.

Note that the returned proxy object directly references the array’s data, and only reads its shape, strides, and writeable flag when constructed. You must take care to ensure that the referenced array is not destroyed or reshaped for the duration of the returned object, typically by limiting the scope of the returned instance.

The returned proxy object supports some of the same methods as `py::array` so that it can be used as a drop-in replacement for some existing, index-checked uses of `py::array`:

- `.ndim()` returns the number of dimensions
- `.data(1, 2, ...)` and `r.mutable_data(1, 2, ...)` returns a pointer to the `const T` or `T` data, respectively, at the given indices. The latter is only available to proxies obtained via `a.mutable_unchecked()`.
- `.itemsize()` returns the size of an item in bytes, i.e. `sizeof(T)`.
- `.ndim()` returns the number of dimensions.
- `.shape(n)` returns the size of dimension `n`
- `.size()` returns the total number of elements (i.e. the product of the shapes).
- `.nbytes()` returns the number of bytes used by the referenced elements (i.e. `itemsize()` times `size()`).
See also:
The file `tests/test_numpy_array.cpp` contains additional examples demonstrating the use of this feature.

### 12.2.6 Ellipsis

Python provides a convenient `...` ellipsis notation that is often used to slice multidimensional arrays. For instance, the following snippet extracts the middle dimensions of a tensor with the first and last index set to zero.

```python
a = ... # a NumPy array
b = a[0, ..., 0]
```

The function `py::ellipsis()` function can be used to perform the same operation on the C++ side:

```cpp
py::array a = /* A NumPy array */;
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
```

### 12.2.7 Memory view

For a case when we simply want to provide a direct accessor to C/C++ buffer without a concrete class object, we can return a `memoryview` object. Suppose we wish to expose a `memoryview` for 2x4 uint8_t array, we can do the following:

```cpp
const uint8_t buffer[] = {
 0, 1, 2, 3,
 4, 5, 6, 7
};
m.def("get_memoryview2d", []() {
 return py::memoryview::from_buffer(
 buffer, // buffer pointer
 { 2, 4 }, // shape (rows, cols)
 { sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes
);
});
```

This approach is meant for providing a `memoryview` for a C/C++ buffer not managed by Python. The user is responsible for managing the lifetime of the buffer. Using a `memoryview` created in this way after deleting the buffer in C++ side results in undefined behavior.

We can also use `memoryview::from_memory` for a simple 1D contiguous buffer:

```cpp
m.def("get_memoryview1d", []() {
 return py::memoryview::from_memory(
 buffer, // buffer pointer
 sizeof(uint8_t) * 8 // buffer size
);
});
```

Changed in version 2.6: `memoryview::from_memory` added.
12.3 Utilities

12.3.1 Using Python’s print function in C++

The usual way to write output in C++ is using `std::cout` while in Python one would use `print`. Since these methods use different buffers, mixing them can lead to output order issues. To resolve this, pybind11 modules can use the `py::print()` function which writes to Python’s `sys.stdout` for consistency.

Python’s `print` function is replicated in the C++ API including optional keyword arguments `sep`, `end`, `file`, `flush`.

Everything works as expected in Python:

```cpp
py::print(1, 2.0, "three"); // 1 2.0 three
py::print(1, 2.0, "three", "sep"="-"); // 1-2.0-three

auto args = py::make_tuple("unpacked", true);
py::print("->", *args, "end"="<-"); // -> unpacked True <-
```

12.3.2 Capturing standard output from ostream

Often, a library will use the streams `std::cout` and `std::cerr` to print, but this does not play well with Python’s standard `sys.stdout` and `sys.stderr` redirection. Replacing a library’s printing with `py::print <print>` may not be feasible. This can be fixed using a guard around the library function that redirects output to the corresponding Python streams:

```cpp
#include <pybind11/iostream.h>
...

// Add a scoped redirect for your noisy code
m.def("noisy_func", []() {
 py::scoped_ostream_redirect stream(// std::ostream&
 std::cout,
 py::module_::import("sys").attr("stdout") // Python output
);
 call_noisy_func();
});
```

**Warning:** The implementation in `pybind11/iostream.h` is NOT thread safe. Multiple threads writing to a redirected ostream concurrently cause data races and potentially buffer overflows. Therefore it is currently a requirement that all (possibly) concurrent redirected ostream writes are protected by a mutex. #HelpAppreciated: Work on iostream.h thread safety. For more background see the discussions under PR #2982 and PR #2995.

This method respects flushes on the output streams and will flush if needed when the scoped guard is destroyed. This allows the output to be redirected in real time, such as to a Jupyter notebook. The two arguments, the C++ stream and the Python output, are optional, and default to standard output if not given. An extra type, `py::scoped_estream_redirect <scoped_estream_redirect>`, is identical except for defaulting to `std::cerr` and `sys.stderr`; this can be useful with `py::call_guard`, which allows multiple items, but uses the default constructor:
// Alternative: Call single function using call guard
m.def("noisy_func", &call_noisy_function,
    py::call_guard<py::scoped_ostream_redirect,
    py::scoped_estream_redirect>();

The redirection can also be done in Python with the addition of a context manager, using the
py::add_ostream_redirect() function:

py::add_ostream_redirect(m, "ostream_redirect");

The name in Python defaults to ostream_redirect if no name is passed. This creates the following context manager in Python:

with ostream_redirect(stdout=True, stderr=True):
    noisy_function()

It defaults to redirecting both streams, though you can use the keyword arguments to disable one of the streams if needed.

Note: The above methods will not redirect C-level output to file descriptors, such as fprintf. For those cases, you’ll need to redirect the file descriptors either directly in C or with Python’s os.dup2 function in an operating-system dependent way.

12.3.3 Evaluating Python expressions from strings and files

pybind11 provides the eval, exec and eval_file functions to evaluate Python expressions and statements. The following example illustrates how they can be used.

// At beginning of file
#include <pybind11/eval.h>
...

// Evaluate in scope of main module
py::object scope = py::module_::import("__main__").attr("__dict__");

// Evaluate an isolated expression
int result = py::eval("my_variable + 10", scope).cast<int>();

// Evaluate a sequence of statements
py::exec(
    "print('Hello')\n" 
    "print('world!');",
    scope);

// Evaluate the statements in an separate Python file on disk
py::eval_file("script.py", scope);

C++11 raw string literals are also supported and quite handy for this purpose. The only requirement is that the first statement must be on a new line following the raw string delimiter R”, ensuring all lines have common leading indent:
```python
py::exec(R"(
 x = get_answer()
 if x == 42:
 print('Hello World!')
 else:
 print('Bye!')
)", scope)
```

**Note:** `eval` and `eval_file` accept a template parameter that describes how the string/file should be interpreted. Possible choices include `eval_expr` (isolated expression), `eval_single_statement` (a single statement, return value is always `none`), and `eval_statements` (sequence of statements, return value is always `none`). `eval` defaults to `eval_expr`, `eval_file` defaults to `eval_statements` and `exec` is just a shortcut for `eval<eval_statements>`.  

12.3. Utilities
CHAPTER

EMBEDDING THE INTERPRETER

While pybind11 is mainly focused on extending Python using C++, it’s also possible to do the reverse: embed the Python interpreter into a C++ program. All of the other documentation pages still apply here, so refer to them for general pybind11 usage. This section will cover a few extra things required for embedding.

13.1 Getting started

A basic executable with an embedded interpreter can be created with just a few lines of CMake and the pybind11::embed target, as shown below. For more information, see Build systems.

```cmake
cmake_minimum_required(VERSION 3.4)
project(example)

find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`

add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)
```

The essential structure of the main.cpp file looks like this:

```cpp
#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;

int main() {
 py::scoped_interpreter guard{}; // start the interpreter and keep it alive
 py::print("Hello, World!"); // use the Python API
}
```

The interpreter must be initialized before using any Python API, which includes all the functions and classes in pybind11. The RAII guard class `scoped_interpreter` takes care of the interpreter lifetime. After the guard is destroyed, the interpreter shuts down and clears its memory. No Python functions can be called after this.
13.2 Executing Python code

There are a few different ways to run Python code. One option is to use `eval`, `exec` or `eval_file`, as explained in *Evaluating Python expressions from strings and files*. Here is a quick example in the context of an executable with an embedded interpreter:

```cpp
#include <pybind11/embed.h>
namespace py = pybind11;

int main() {
 py::scoped_interpreter guard{};

 py::exec(R"(
 kwargs = dict(name="World", number=42)
 message = "Hello, {name}! The answer is {number}".format(**kwargs)
 print(message)
)");
}
```

Alternatively, similar results can be achieved using pybind11’s API (see *Python C++ interface* for more details).

```cpp
#include <pybind11/embed.h>
namespace py = pybind11;
using namespace py::literals;

int main() {
 py::scoped_interpreter guard{};

 auto kwargs = py::dict("name"="World", "number"=42);
 auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
 py::print(message);
}
```

The two approaches can also be combined:

```cpp
#include <pybind11/embed.h>
#include <iostream>
namespace py = pybind11;
using namespace py::literals;

int main() {
 py::scoped_interpreter guard{};

 auto locals = py::dict("name"="World", "number"=42);
 py::exec(R"(
 message = "Hello, {name}! The answer is {number}"_s.format(**locals())
)", py::globals(), locals);

 auto message = locals["message"].cast<std::string>();
 std::cout << message;
}
```
13.3 Importing modules

Python modules can be imported using `module_::import()`:

```cpp
py::module_ sys = py::module_::import("sys");
py::print(sys.attr("path"));
```

For convenience, the current working directory is included in `sys.path` when embedding the interpreter. This makes it easy to import local Python files:

```cpp
/*calc.py located in the working directory*/

def add(i, j):
 return i + j
```

```cpp
py::module_ calc = py::module_::import("calc");
py::object result = calc.attr("add")(1, 2);
int n = result.cast<int>();
assert(n == 3);
```

Modules can be reloaded using `module_::reload()` if the source is modified e.g. by an external process. This can be useful in scenarios where the application imports a user defined data processing script which needs to be updated after changes by the user. Note that this function does not reload modules recursively.

13.4 Adding embedded modules

Embedded binary modules can be added using the `PYBIND11_EMBEDDED_MODULE` macro. Note that the definition must be placed at global scope. They can be imported like any other module.

```cpp
#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
 // 'm' is a 'py::module_' which is used to bind functions and classes
 m.def("add", [](int i, int j) {
 return i + j;
 });
}

int main() {
 py::scoped_interpreter guard{};

 auto fast_calc = py::module_::import("fast_calc");
 auto result = fast_calc.attr("add")(1, 2).cast<int>();
 assert(result == 3);
}
```

Unlike extension modules where only a single binary module can be created, on the embedded side an unlimited number of modules can be added using multiple `PYBIND11_EMBEDDED_MODULE` definitions (as long as they have unique names).

These modules are added to Python’s list of builtins, so they can also be imported in pure Python files loaded by the interpreter. Everything interacts naturally.
import cpp_module

a = cpp_module.a
b = a + 1

#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
    m.attr("a") = 1;
}

int main() {
    py::scoped_interpreter guard{};

    auto py_module = py::module_::import("py_module");

    auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
    assert(locals["a"].cast<int>() == 1);
    assert(locals["b"].cast<int>() == 2);

    py::exec(R"(
        c = a + b
        message = fmt.format(a, b, c)
    )", py::globals(), locals);

    assert(locals["c"].cast<int>() == 3);
    assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
}

### 13.5 Interpreter lifetime

The Python interpreter shuts down when scoped_interpreter is destroyed. After this, creating a new instance will restart the interpreter. Alternatively, the initialize_interpreter / finalize_interpreter pair of functions can be used to directly set the state at any time.

Modules created with pybind11 can be safely re-initialized after the interpreter has been restarted. However, this may not apply to third-party extension modules. The issue is that Python itself cannot completely unload extension modules and there are several caveats with regard to interpreter restarting. In short, not all memory may be freed, either due to Python reference cycles or user-created global data. All the details can be found in the CPython documentation.

**Warning:** Creating two concurrent scoped_interpreter guards is a fatal error. So is calling initialize_interpreter for a second time after the interpreter has already been initialized.

Do not use the raw CPython API functions Py_Initialize and Py_Finalize as these do not properly handle the lifetime of pybind11’s internal data.
13.6 Sub-interpreter support

Creating multiple copies of `scoped_interpreter` is not possible because it represents the main Python interpreter. Sub-interpreters are something different and they do permit the existence of multiple interpreters. This is an advanced feature of the CPython API and should be handled with care. pybind11 does not currently offer a C++ interface for sub-interpreters, so refer to the CPython documentation for all the details regarding this feature.

We'll just mention a couple of caveats the sub-interpreters support in pybind11:

1. Sub-interpreters will not receive independent copies of embedded modules. Instead, these are shared and modifications in one interpreter may be reflected in another.

2. Managing multiple threads, multiple interpreters and the GIL can be challenging and there are several caveats here, even within the pure CPython API (please refer to the Python docs for details). As for pybind11, keep in mind that `gil_scoped_release` and `gil_scoped_acquire` do not take sub-interpreters into account.
14.1 General notes regarding convenience macros

Pybind11 provides a few convenience macros such as PYBIND11_DECLARE_HOLDER_TYPE() and PYBIND11_OVERRIDE_. Since these are “just” macros that are evaluated in the preprocessor (which has no concept of types), they will get confused by commas in a template argument; for example, consider:

```
PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)
```

The limitation of the C preprocessor interprets this as five arguments (with new arguments beginning after each comma) rather than three. To get around this, there are two alternatives: you can use a type alias, or you can wrap the type using the PYBIND11_TYPE macro:

```
// Version 1: using a type alias
using ReturnType = MyReturnType<T1, T2>;
using ClassType = Class<T3, T4>;
PYBIND11_OVERRIDE(ReturnType, ClassType, func);
```

```
// Version 2: using the PYBIND11_TYPE macro:
PYBIND11_OVERRIDE(PYBIND11_TYPE(MyReturnType<T1, T2>),
PYBIND11_TYPE(Class<T3, T4>), func)
```

The PYBIND11_MAKE_OPAQUE macro does not require the above workarounds.

14.2 Global Interpreter Lock (GIL)

When calling a C++ function from Python, the GIL is always held. The classes gil_scoped_release and gil_scoped_acquire can be used to acquire and release the global interpreter lock in the body of a C++ function call. In this way, long-running C++ code can be parallelized using multiple Python threads. Taking Overriding virtual functions in Python as an example, this could be realized as follows (important changes highlighted):

```
class PyAnimal : public Animal {
public:
 /* Inherit the constructors */
 using Animal::Animal;

 /* Trampoline (need one for each virtual function) */
 std::string go(int n_times) {
 /* Acquire GIL before calling Python code */
 }
```
pybind11 Documentation

(continued from previous page)

py::gil_scoped_acquire acquire;

PYBIND11_OVERRIDE_PURE(
    std::string, /* Return type */
    Animal, /* Parent class */
    go, /* Name of function */
    n_times /* Argument(s) */
);

PYBIND11_MODULE(example, m) {
    py::class_<Animal, PyAnimal> animal(m, "Animal");
    animal
        .def(py::init<>())
        .def("go", &Animal::go);

    py::class_<Dog>(m, "Dog", animal)
        .def(py::init<>());

    m.def("call_go", 
        [ ](Animal *animal) -> std::string {
            /* Release GIL before calling into (potentially long-running) C++ code */
            py::gil_scoped_release release;
            return call_go(animal);
        });
}

The call_go wrapper can also be simplified using the call_guard policy (see Additional call policies) which yields the same result:

m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>())

### 14.3 Binding sequence data types, iterators, the slicing protocol, etc.

Please refer to the supplemental example for details.

See also:

The file tests/test_sequences_and_iterators.cpp contains a complete example that shows how to bind a sequence data type, including length queries (__len__), iterators (__iter__), the slicing protocol and other kinds of useful operations.
14.4 Partitioning code over multiple extension modules

It's straightforward to split binding code over multiple extension modules, while referencing types that are declared elsewhere. Everything “just” works without any special precautions. One exception to this rule occurs when extending a type declared in another extension module. Recall the basic example from Section Inheritance and automatic downcasting.

```cpp
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name);
py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

Suppose now that Pet bindings are defined in a module named basic, whereas the Dog bindings are defined somewhere else. The challenge is of course that the variable pet is not available anymore though it is needed to indicate the inheritance relationship to the constructor of class_<Dog>. However, it can be acquired as follows:

```cpp
py::object pet = (py::object) py::module_::import("basic").attr("Pet");
py::class_<Dog>(m, "Dog", pet)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

Alternatively, you can specify the base class as a template parameter option to class_, which performs an automated lookup of the corresponding Python type. Like the above code, however, this also requires invoking the import function once to ensure that the pybind11 binding code of the module basic has been executed:

```cpp
py::module_::import("basic");
py::class_<Dog, Pet>(m, "Dog")
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);
```

Naturally, both methods will fail when there are cyclic dependencies.

Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g. via the command line flag -fvisibility=hidden on GCC/Clang), which is required for proper pybind11 functionality, can interfere with the ability to access types defined in another extension module. Working around this requires manually exporting types that are accessed by multiple extension modules; pybind11 provides a macro to do just this:

```cpp
class PYBIND11_EXPORT Dog : public Animal {
 ...
};
```

Note also that it is possible (although would rarely be required) to share arbitrary C++ objects between extension modules at runtime. Internal library data is shared between modules using capsule machinery\(^1\) which can be also utilized for storing, modifying and accessing user-defined data. Note that an extension module will “see” other extensions’ data if and only if they were built with the same pybind11 version. Consider the following example:

\(^1\) [https://docs.python.org/3/extending/extending.html#using-capsules](https://docs.python.org/3/extending/extending.html#using-capsules)
If the above snippet was used in several separately compiled extension modules, the first one to be imported would create a `MyData` instance and associate a "mydata" key with a pointer to it. Extensions that are imported later would be then able to access the data behind the same pointer.

### 14.5 Module Destructors

`pybind11` does not provide an explicit mechanism to invoke cleanup code at module destruction time. In rare cases where such functionality is required, it is possible to emulate it using Python capsules or weak references with a destruction callback.

```cpp
auto cleanup_callback = []() {
 // perform cleanup here -- this function is called with the GIL held
};
m.add_object("_cleanup", py::capsule(cleanup_callback));
```

This approach has the potential downside that instances of classes exposed within the module may still be alive when the cleanup callback is invoked (whether this is acceptable will generally depend on the application).

Alternatively, the capsule may also be stashed within a type object, which ensures that it not called before all instances of that type have been collected:

```cpp
auto cleanup_callback = []() { /* ... */ };
m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
```

Both approaches also expose a potentially dangerous `_cleanup` attribute in Python, which may be undesirable from an API standpoint (a premature explicit call from Python might lead to undefined behavior). Yet another approach that avoids this issue involves weak reference with a cleanup callback:

```cpp
// Register a callback function that is invoked when the BaseClass object is collected
py::cpp_function cleanup_callback([]() { py::handle weakref) {
 // perform cleanup here -- this function is called with the GIL held

 weakref.dec_ref(); // release weak reference
};

// Create a weak reference with a cleanup callback and initially leak it
(llvm) py::weakref(m.attr("BaseClass"), cleanup_callback).release();
```

**Note:** `PyPy` does not garbage collect objects when the interpreter exits. An alternative approach (which also works on CPython) is to use the `atexit` module\(^2\), for example:

```cpp
auto atexit = py::module_::import("atexit");
atexit.attr("register")([]() { (continues on next page)
```

\(^2\) [https://docs.python.org/3/library/atexit.html](https://docs.python.org/3/library/atexit.html)
// perform cleanup here -- this function is called with the GIL held
});

### 14.6 Generating documentation using Sphinx

Sphinx\(^3\) has the ability to inspect the signatures and documentation strings in pybind11-based extension modules to automatically generate beautiful documentation in a variety formats. The python_example repository\(^4\) contains a simple example repository which uses this approach.

There are two potential gotchas when using this approach: first, make sure that the resulting strings do not contain any TAB characters, which break the docstring parsing routines. You may want to use C++11 raw string literals, which are convenient for multi-line comments. Conveniently, any excess indentation will be automatically be removed by Sphinx. However, for this to work, it is important that all lines are indented consistently, i.e.:

```cpp
// ok
m.def("foo", &foo, R"mydelimiter(
 The foo function

 Parameters

)mydelimiter"));

// *not ok*

m.def("foo", &foo, R"mydelimiter(The foo function

 Parameters

)mydelimiter"));
```

By default, pybind11 automatically generates and prepends a signature to the docstring of a function registered with `module_::def()` and `class_::def()`. Sometimes this behavior is not desirable, because you want to provide your own signature or remove the docstring completely to exclude the function from the Sphinx documentation. The class options allows you to selectively suppress auto-generated signatures:

```cpp
PYBIND11_MODULE(example, m) {
 py::options options;
 options.disable_function_signatures();

 m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers
 ");
}
```

Note that changes to the settings affect only function bindings created during the lifetime of the options instance. When it goes out of scope at the end of the module’s init function, the default settings are restored to prevent unwanted side effects.

---

\(^3\) [http://www.sphinx-doc.org](http://www.sphinx-doc.org)

\(^4\) [http://github.com/pybind/python_example](http://github.com/pybind/python_example)
14.7 Avoiding C++ types in docstrings

Docstrings are generated at the time of the declaration, e.g. when `.def(...)` is called. At this point parameter and return types should be known to pybind11. If a custom type is not exposed yet through a `py::class_` constructor or a custom type caster, its C++ type name will be used instead to generate the signature in the docstring:

```cpp
| __init__(...)
| __init__(self: example.Foo, arg0: ns::Bar) -> None
^^^^^^^^```

This limitation can be circumvented by ensuring that C++ classes are registered with pybind11 before they are used as a parameter or return type of a function:

```cpp
PYBIND11_MODULE(example, m) {
    auto pyFoo = py::class_<ns::Foo>(m, "Foo");
    auto pyBar = py::class_<ns::Bar>(m, "Bar");

    pyFoo.def(py::init<const ns::Bar&>());
    pyBar.def(py::init<const ns::Foo&>());
}
```
FREQUENTLY ASKED QUESTIONS

15.1 “ImportError: dynamic module does not define init function”

1. Make sure that the name specified in PYBIND11_MODULE is identical to the filename of the extension library (without suffixes such as .so).
2. If the above did not fix the issue, you are likely using an incompatible version of Python that does not match what you compiled with.

15.2 “Symbol not found: __Py_ZeroStruct / _PyInstanceMethod_Type”

See the first answer.

15.3 “SystemError: dynamic module not initialized properly”

See the first answer.

15.4 The Python interpreter immediately crashes when importing my module

See the first answer.

15.5 Limitations involving reference arguments

In C++, it’s fairly common to pass arguments using mutable references or mutable pointers, which allows both read and write access to the value supplied by the caller. This is sometimes done for efficiency reasons, or to realize functions that have multiple return values. Here are two very basic examples:

```c
void increment(int &i) { i++; }
void increment_ptr(int *i) { (*i)++; }
```

In Python, all arguments are passed by reference, so there is no general issue in binding such code from Python.
However, certain basic Python types (like `str`, `int`, `bool`, `float`, etc.) are **immutable**. This means that the following attempt to port the function to Python doesn’t have the same effect on the value provided by the caller – in fact, it does nothing at all.

```python
def increment(i):
    i += 1  # nope..
```

`pybind11` is also affected by such language-level conventions, which means that binding `increment` or `increment_ptr` will also create Python functions that don’t modify their arguments.

Although inconvenient, one workaround is to encapsulate the immutable types in a custom type that does allow modifications.

An other alternative involves binding a small wrapper lambda function that returns a tuple with all output arguments (see the remainder of the documentation for examples on binding lambda functions). An example:

```c
int foo(int &i) { i++; return 123; }
```

and the binding code

```python
m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });
```

15.6 How can I reduce the build time?

It’s good practice to split binding code over multiple files, as in the following example:

example.cpp

```cpp
void init_ex1(py::module_ &m);
void init_ex2(py::module_ &m);
/* ... */
PYBIND11_MODULE(example, m) {
    init_ex1(m);
    init_ex2(m);
    /* ... */
}
```

ex1.cpp

```cpp
void init_ex1(py::module_ &m) {
    m.def("add", [](int a, int b) { return a + b; });
}
```

ex2.cpp

```cpp
void init_ex2(py::module_ &m) {
    m.def("sub", [](int a, int b) { return a - b; });
}
```

python

```python
>>> import example
>>> example.add(1, 2)
```
As shown above, the various `init_ex` functions should be contained in separate files that can be compiled independently from one another, and then linked together into the same final shared object. Following this approach will:

1. reduce memory requirements per compilation unit.
2. enable parallel builds (if desired).
3. allow for faster incremental builds. For instance, when a single class definition is changed, only a subset of the binding code will generally need to be recompiled.

15.7 “recursive template instantiation exceeded maximum depth of 256”

If you receive an error about excessive recursive template evaluation, try specifying a larger value, e.g. `-ftemplate-depth=1024` on GCC/Clang. The culprit is generally the generation of function signatures at compile time using C++14 template metaprogramming.

15.8 “’SomeClass’ declared with greater visibility than the type of its field ‘SomeClass::member’ [-Wattributes]”

This error typically indicates that you are compiling without the required `-fvisibility` flag. pybind11 code internally forces hidden visibility on all internal code, but if non-hidden (and thus exported) code attempts to include a pybind type (for example, `py::object` or `py::list`) you can run into this warning.

To avoid it, make sure you are specifying `-fvisibility=hidden` when compiling pybind code.

As to why `-fvisibility=hidden` is necessary, because pybind modules could have been compiled under different versions of pybind itself, it is also important that the symbols defined in one module do not clash with the potentially incompatible symbols defined in another. While Python extension modules are usually loaded with localized symbols (under POSIX systems typically using `dlopen` with the RTLD_LOCAL flag), this Python default can be changed, but even if it isn’t it is not always enough to guarantee complete independence of the symbols involved when not using `-fvisibility=hidden`.

Additionally, `-fvisibility=hidden` can deliver considerably binary size savings. (See the following section for more details.)

15.9 How can I create smaller binaries?

To do its job, pybind11 extensively relies on a programming technique known as template metaprogramming, which is a way of performing computation at compile time using type information. Template metaprogramming usually instantiates code involving significant numbers of deeply nested types that are either completely removed or reduced to just a few instructions during the compiler’s optimization phase. However, due to the nested nature of these types, the resulting symbol names in the compiled extension library can be extremely long. For instance, the included test suite contains the following symbol:
The memory needed to store just the mangled name of this function (196 bytes) is larger than the actual piece of code (111 bytes) it represents! On the other hand, it’s silly to even give this function a name – after all, it’s just a tiny cog in a bigger piece of machinery that is not exposed to the outside world. So we’ll generally only want to export symbols for those functions which are actually called from the outside.

This can be achieved by specifying the parameter -fvisibility=hidden to GCC and Clang, which sets the default symbol visibility to hidden, which has a tremendous impact on the final binary size of the resulting extension library. (On Visual Studio, symbols are already hidden by default, so nothing needs to be done there.)

In addition to decreasing binary size, -fvisibility=hidden also avoids potential serious issues when loading multiple modules and is required for proper pybind operation. See the previous FAQ entry for more details.

15.10. How can I properly handle Ctrl-C in long-running functions?

Ctrl-C is received by the Python interpreter, and holds it until the GIL is released, so a long-running function won’t be interrupted.

To interrupt from inside your function, you can use the PyErr_CheckSignals() function, that will tell if a signal has been raised on the Python side. This function merely checks a flag, so its impact is negligible. When a signal has been received, you must either explicitly interrupt execution by throwing py::error_already_set (which will propagate the existing KeyboardInterrupt), or clear the error (which you usually will not want):

```python
PYBIND11_MODULE(example, m)
{
    m.def("long running_func", [](
    { 
        for (;;) {
            if (PyErr_CheckSignals() != 0)
                throw py::error_already_set();
            // Long running iteration
        }
    });
```

The memory needed to store just the mangled name of this function (196 bytes) is larger than the actual piece of code (111 bytes) it represents! On the other hand, it’s silly to even give this function a name – after all, it’s just a tiny cog in a bigger piece of machinery that is not exposed to the outside world. So we’ll generally only want to export symbols for those functions which are actually called from the outside.

This can be achieved by specifying the parameter -fvisibility=hidden to GCC and Clang, which sets the default symbol visibility to hidden, which has a tremendous impact on the final binary size of the resulting extension library. (On Visual Studio, symbols are already hidden by default, so nothing needs to be done there.)

In addition to decreasing binary size, -fvisibility=hidden also avoids potential serious issues when loading multiple modules and is required for proper pybind operation. See the previous FAQ entry for more details.

15.10. How can I properly handle Ctrl-C in long-running functions?

Ctrl-C is received by the Python interpreter, and holds it until the GIL is released, so a long-running function won’t be interrupted.

To interrupt from inside your function, you can use the PyErr_CheckSignals() function, that will tell if a signal has been raised on the Python side. This function merely checks a flag, so its impact is negligible. When a signal has been received, you must either explicitly interrupt execution by throwing py::error_already_set (which will propagate the existing KeyboardInterrupt), or clear the error (which you usually will not want):

```python
PYBIND11_MODULE(example, m)
{
    m.def("long running_func", [](
    { 
        for (;;) {
            if (PyErr_CheckSignals() != 0)
                throw py::error_already_set();
            // Long running iteration
        }
    });
```
15.11 CMake doesn’t detect the right Python version

The CMake-based build system will try to automatically detect the installed version of Python and link against that. When this fails, or when there are multiple versions of Python and it finds the wrong one, delete CMakeCache.txt and then add -DPYTHON_EXECUTABLE=$(which python) to your CMake configure line. (Replace $(which python) with a path to python if your prefer.)

You can alternatively try -DPYBIND11_FINDPYTHON=ON, which will activate the new CMake FindPython support instead of pybind11’s custom search. Requires CMake 3.12+, and 3.15+ or 3.18.2+ are even better. You can set this in your CMakeLists.txt before adding or finding pybind11, as well.

15.12 Inconsistent detection of Python version in CMake and pybind11

The functions find_package(PythonInterp) and find_package(PythonLibs) provided by CMake for Python version detection are modified by pybind11 due to unreliability and limitations that make them unsuitable for pybind11’s needs. Instead pybind11 provides its own, more reliable Python detection CMake code. Conflicts can arise, however, when using pybind11 in a project that also uses the CMake Python detection in a system with several Python versions installed.

This difference may cause inconsistencies and errors if both mechanisms are used in the same project.

There are three possible solutions:

1. Avoid using find_package(PythonInterp) and find_package(PythonLibs) from CMake and rely on pybind11 in detecting Python version. If this is not possible, the CMake machinery should be called before including pybind11.

2. Set PYBIND11_FINDPYTHON to True or use find_package(Python COMPONENTS Interpreter Development) on modern CMake (3.12+, 3.15+ better, 3.18.2+ best). Pybind11 in these cases uses the new CMake FindPython instead of the old, deprecated search tools, and these modules are much better at finding the correct Python.

3. Set PYBIND11_NOPYTHON to TRUE. Pybind11 will not search for Python. However, you will have to use the target-based system, and do more setup yourself, because it does not know about or include things that depend on Python, like pybind11_add_module. This might be ideal for integrating into an existing system, like scikit-build’s Python helpers.

15.13 How to cite this project?

We suggest the following BibTeX template to cite pybind11 in scientific discourse:

```bibtex
@misc{pybind11,  
  author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan},  
  year = {2017},  
  note = {https://github.com/pybind/pybind11},  
  title = {pybind11 -- Seamless operability between C++11 and Python}  
}
```
The following is the result of a synthetic benchmark comparing both compilation time and module size of pybind11 against Boost.Python. A detailed report about a Boost.Python to pybind11 conversion of a real project is available here:

16.1 Setup

A python script (see the docs/benchmark.py file) was used to generate a set of files with dummy classes whose count increases for each successive benchmark (between 1 and 2048 classes in powers of two). Each class has four methods with a randomly generated signature with a return value and four arguments. (There was no particular reason for this setup other than the desire to generate many unique function signatures whose count could be controlled in a simple way.)

Here is an example of the binding code for one class:

```python
... class cl034 {
    public:
        cl279 *fn_000(cl084 *, cl057 *, cl065 *, cl042 *);
        cl025 *fn_001(cl098 *, cl262 *, cl414 *, cl121 *);
        cl085 *fn_002(cl445 *, cl297 *, cl145 *, cl421 *);
        cl470 *fn_003(cl200 *, cl323 *, cl332 *, cl1492 *);
};
...
```

`PYBIND11_MODULE(example, m) {
...
py::class_<cl034>(m, "cl034")
 .def("fn_000", &cl034::fn_000)
 .def("fn_001", &cl034::fn_001)
 .def("fn_002", &cl034::fn_002)
 .def("fn_003", &cl034::fn_003)
 ...
}
```

The Boost.Python version looks almost identical except that a return value policy had to be specified as an argument to `def()`. For both libraries, compilation was done with

```
Apple LLVM version 7.0.2 (clang-700.1.81)
```

---

1 http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf
and the following compilation flags

```
g++ -Os -shared -rdynamic -undefined dynamic_lookup -fvisibility=hidden -std=c++14
```

### 16.2 Compilation time

The following log-log plot shows how the compilation time grows for an increasing number of class and function declarations. pybind11 includes many fewer headers, which initially leads to shorter compilation times, but the performance is ultimately fairly similar (pybind11 is 19.8 seconds faster for the largest file with 2048 classes and a total of 8192 methods – a modest 1.2x speedup relative to Boost.Python, which required 116.35 seconds).

![Compilation time of module](image)

### 16.3 Module size

Differences between the two libraries become much more pronounced when considering the file size of the generated Python plugin: for the largest file, the binary generated by Boost.Python required 16.8 MiB, which was 2.17 times / 9.1 megabytes larger than the output generated by pybind11. For very small inputs, Boost.Python has an edge in the plot below – however, note that it stores many definitions in an external library, whose size was not included here, hence the comparison is slightly shifted in Boost.Python’s favor.
16.3. Module size

![Graph showing file size of module vs. number of functions for Boost.Python and pybind11.](image)
17.1 Design choices

pybind11 strives to be a general solution to binding generation, but it also has certain limitations:

- pybind11 casts away `const`-ness in function arguments and return values. This is in line with the Python language, which has no concept of `const` values. This means that some additional care is needed to avoid bugs that would be caught by the type checker in a traditional C++ program.

- The NumPy interface `pybind11::array` greatly simplifies accessing numerical data from C++ (and vice versa), but it’s not a full-blown array class like `Eigen::Array` or `boost.multi_array`. `Eigen` objects are directly supported, however, with `pybind11/eigen.h`.

Large but useful features could be implemented in pybind11 but would lead to a significant increase in complexity. Pybind11 strives to be simple and compact. Users who require large new features are encouraged to write an extension to pybind11; see `pybind11_json` for an example.

17.2 Known bugs

These are issues that hopefully will one day be fixed, but currently are unsolved. If you know how to help with one of these issues, contributions are welcome!

- Intel 20.2 is currently having an issue with the test suite. #2573
- Debug mode Python does not support 1-5 tests in the test suite currently. #2422
- PyPy3 7.3.1 and 7.3.2 have issues with several tests on 32-bit Windows.

17.3 Known limitations

These are issues that are probably solvable, but have not been fixed yet. A clean, well written patch would likely be accepted to solve them.

- Type casters are not kept alive recursively. #2527 One consequence is that containers of `char *` are currently not supported. #2245
- The `cpp_test` does not run on Windows with Python 3.8 or newer, due to DLL loader changes. User code that is correctly installed should not be affected. #2560
17.4 Python 3.9.0 warning

Combining older versions of pybind11 (< 2.6.0) with Python on exactly 3.9.0 will trigger undefined behavior that typically manifests as crashes during interpreter shutdown (but could also destroy your data. You have been warned).

This issue was fixed in Python. As a mitigation for this bug, pybind11 2.6.0 or newer includes a workaround specifically when Python 3.9.0 is detected at runtime, leaking about 50 bytes of memory when a callback function is garbage collected. For reference, the pybind11 test suite has about 2,000 such callbacks, but only 49 are garbage collected before the end-of-process. Wheels (even if built with Python 3.9.0) will correctly avoid the leak when run in Python 3.9.1, and this does not affect other 3.X versions.

Warning: Please be advised that the reference documentation discussing pybind11 internals is currently incomplete. Please refer to the previous sections and the pybind11 header files for the nitty gritty details.
18.1 Macros

PYBIND11_MODULE(name, variable)

This macro creates the entry point that will be invoked when the Python interpreter imports an extension module. The module name is given as the first argument and it should not be in quotes. The second macro argument defines a variable of type py::module_ which can be used to initialize the module.

The entry point is marked as “maybe unused” to aid dead-code detection analysis: since the entry point is typically only looked up at runtime and not referenced during translation, it would otherwise appear as unused (“dead”) code.

    PYBIND11_MODULE(example, m) {
        m.doc() = "pybind11 example module";

        // Add bindings here
        m.def("foo", []() {
            return "Hello, World!";
        });
    }

18.2 Convenience classes for arbitrary Python types

18.2.1 Common member functions

template<type name Derived>

class object_api : public pyobject_tag

    A mixin class which adds common functions to handle, object and various accessors. The only requirement for Derived is to implement PyObject *Derived::ptr() const.
Public Functions

iterator begin() const

Return an iterator equivalent to calling \texttt{iter()} in Python. The object must be a collection which supports the iteration protocol.

iterator end() const

Return a sentinel which ends iteration.

item_accessor \texttt{operator[]} (\texttt{handle key}) const

Return an internal functor to invoke the object’s sequence protocol. Casting the returned \texttt{detail::item_accessor} instance to a \texttt{handle} or \texttt{object} subclass causes a corresponding call to \texttt{__getitem__}. Assigning a \texttt{handle} or \texttt{object} subclass causes a call to \texttt{__setitem__}.

item_accessor \texttt{operator[]} (const char *key) const

See above (the only difference is that they key is provided as a string literal)

obj_attr_accessor \texttt{attr}(\texttt{handle key}) const

Return an internal functor to access the object’s attributes. Casting the returned \texttt{detail::obj_attr_accessor} instance to a \texttt{handle} or \texttt{object} subclass causes a corresponding call to \texttt{getattr}. Assigning a \texttt{handle} or \texttt{object} subclass causes a call to \texttt{setattr}.

str_attr_accessor \texttt{attr}(const char *key) const

See above (the only difference is that they key is provided as a string literal)

args_proxy \texttt{operator*} () const

Matches * unpacking in Python, e.g. to unpack arguments out of a tuple or list for a function call. Applying another * to the result yields ** unpacking, e.g. to unpack a dict as function keyword arguments. See \texttt{Calling Python functions}.

template<typename T>
bool \texttt{contains}(T &&item) const

Check if the given item is contained within this object, i.e. \texttt{item in obj}.

template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
\texttt{object operator()} (Args&&... args) const

Assuming the Python object is a function or implements the \texttt{__call__} protocol, \texttt{operator()} invokes the underlying function, passing an arbitrary set of parameters. The result is returned as a \texttt{object} and may need to be converted back into a Python object using \texttt{handle::cast()}.

When some of the arguments cannot be converted to Python objects, the function will throw a \texttt{cast_error} exception. When the Python function call fails, a \texttt{error_already_set} exception is thrown.

inline bool \texttt{is(object_api const \&other)} const

Equivalent to \texttt{obj is other} in Python.

inline bool \texttt{is\_none()} const

Equivalent to \texttt{obj is None} in Python.

inline bool \texttt{equal(object_api const \&other)} const

Equivalent to \texttt{obj == other} in Python.
str_attr_accessor doc() const
    Get or set the object's docstring, i.e. obj.__doc__.
inline int ref_count() const
    Return the object’s current reference count.

18.2.2 Without reference counting

class handle : public detail::object_api<handle>

Holds a reference to a Python object (no reference counting)

The handle class is a thin wrapper around an arbitrary Python object (i.e. a PyObject * in Python’s C API). It does not perform any automatic reference counting and merely provides a basic C++ interface to various Python API functions.

See also:
The object class inherits from handle and adds automatic reference counting features.
Subclassed by args_proxy, kwargs_proxy, object

Public Functions

handle() = default
    The default constructor creates a handle with a nullptr-valued pointer.
inline handle(PyObject *ptr)
    Creates a handle from the given raw Python object pointer.
inline PyObject *ptr() const
    Return the underlying PyObject * pointer.
inline const handle &inc_ref() const &
    Manually increase the reference count of the Python object. Usually, it is preferable to use the object class which derives from handle and calls this function automatically. Returns a reference to itself.
inline const handle &dec_ref() const &
    Manually decrease the reference count of the Python object. Usually, it is preferable to use the object class which derives from handle and calls this function automatically. Returns a reference to itself.

template<typename T>
T cast() const
    Attempt to cast the Python object into the given C++ type. A cast_error will be throw upon failure.
inline explicit operator bool() const
    Return true when the handle wraps a valid Python object.
inline bool operator==(const handle &h) const
    Deprecated: Check that the underlying pointers are the same. Equivalent to obj1 is obj2 in Python.
18.2.3 With reference counting

class **object** : public **handle**

Holds a reference to a Python object (with reference counting)

Like **handle**, the **object** class is a thin wrapper around an arbitrary Python object (i.e. a PyObject * in Python’s C API). In contrast to **handle**, it optionally increases the object’s reference count upon construction, and it always decreases the reference count when the **object** instance goes out of scope and is destructed. When using **object** instances consistently, it is much easier to get reference counting right at the first attempt.

Subclassed by bool, buffer, bytearray, bytes, capsule, dict, dtype, ellipsis, exception< type >, float, function, generic_type, int, iterable, iterator, list, memoryview, module, none, sequence, set, slice, staticmethod, str, tuple, type, weakref

**Public Functions**

**inline object**(const **object** &o)
   Copy constructor; always increases the reference count.

**inline object**(**object** &&other) noexcept
   Move constructor; steals the object from other and preserves its reference count.

**inline ~object**()
   Destructor; automatically calls **handle::dec_ref**()

**inline handle release**()
   Resets the internal pointer to nullptr without decreasing the object’s reference count. The function returns a raw handle to the original Python object.

**template<typename T>**

**T reinterpret_borrow**(**handle** h)

Declare that a **handle** or PyObject * is a certain type and borrow the reference. The target type T must be **object** or one of its derived classes. The function doesn’t do any conversions or checks. It’s up to the user to make sure that the target type is correct.

```cpp
PyObject *p = PyList_GetItem(obj, index);
py::object o = reinterpret_borrow<py::object>(p);
// or
py::tuple t = reinterpret_borrow<py::tuple>(p); // `p` must be already be a
 `tuple`
```

**template<typename T>**

**T reinterpret_steal**(**handle** h)

Like **reinterpret_borrow()**, but steals the reference.
18.3 Convenience classes for specific Python types

class module_ : public object
    wrapper for Python extension modules.

Public Functions

inline explicit module_(const char *name, const char *doc = nullptr)
    create a new top-level Python module with the given name and docstring.

template<typename Func, typename ...Extra>
inline module_ &def(const char *name_, Func &&f, const Extra&& ... extra)
    create Python binding for a new function within the module scope. Func can be a plain C++ function, a function pointer, or a lambda function. For details on the Extra&& ... extra argument, see section Passing extra arguments to def or class_.

inline module_ def_submodule(const char *name, const char *doc = nullptr)
    create and return a new Python submodule with the given name and docstring. This also works recursively, i.e.

```
PyObject *p = PyObject_Str(obj);
py::str s = reinterpret_steal<py::str>(p); // <-- 'p' must be already be a...
```

inline void reload()
    reload the module or throws error_already_set.

inline void add_object(const char *name, handle obj, bool overwrite = false)
    adds an object to the module using the given name. Throws if an object with the given name already exists. overwrite should almost always be false: attempting to overwrite objects that pybind11 has established will, in most cases, break things.
Public Static Functions

static inline module_import(const char *name)
   Import and return a module or throws error_already_set.

static inline module_create_extension_module(const char *name, const char *doc, module_def *def)

   Create a new top-level module that can be used as the main module of a C extension.
   def should point to a statically allocated module_def.

Functions

template<typename Unsigned>
   Unsigned as_unsigned(PyObject *o)

   template<typename ...Args>
   constexpr bool args_are_all_keyword_or_ds()

   class iterator : public object
      #include <pytypes.h>

   Wraps a Python iterator so that it can also be used as a C++ input iterator
   Caveat: copying an iterator does not (and cannot) clone the internal state of the Python iterable. This also
   applies to the post-increment operator. This iterator should only be used to retrieve the current value using
   operator*().

Public Static Functions

static inline iterator sentinel()

   The value which marks the end of the iteration. it == iterator::sentinel() is equivalent to
   catching StopIteration in Python.

   void foo(py::iterator it) {
      while (it != py::iterator::sentinel()) {
         // use "*it"
         ++it;
      }
   }

   class type : public object
**Public Static Functions**

static inline `handle handle_of(handle h)`
Return a type handle from a handle or an object.

static inline `type of(handle h)`
Return a type object from a handle or an object.

template<typename T>
static `handle handle_of()`  
Convert C++ type to handle if previously registered. Does not convert standard types, like int, float. etc. yet. See https://github.com/pybind/pybind11/issues/2486

template<typename T>
static inline `type of()`  
Convert C++ type to type if previously registered. Does not convert standard types, like int, float. etc. yet. See https://github.com/pybind/pybind11/issues/2486

class `iterable` : public `object`

class `str` : public `object`

**Public Functions**

inline explicit `str(handle h)`
Return a string representation of the object. This is analogous to the `str()` function in Python.

class `bytes` : public `object`

class `bytarray` : public `object`

class `none` : public `object`

class `ellipsis` : public `object`

class `bool_` : public `object`

class `int_` : public `object`

class `float_` : public `object`
class weakref : public object

class slice : public object

class capsule : public object

class tuple : public object
    Subclassed by args

class dict : public object
    Subclassed by kwargs

class sequence : public object

class list : public object

class args : public tuple

class kwargs : public dict

class set : public object

class function : public object
    Subclassed by cpp_function

class staticmethod : public object

class buffer : public object
    Subclassed by array

class memoryview : public object
Public Functions

inline explicit memoryview(const buffer_info &info)

Creates memoryview from buffer_info.
buffer_info must be created from buffer::request(). Otherwise throws an exception.
For creating a memoryview from objects that support buffer protocol, use memoryview(const object & obj) instead of this constructor.

Public Static Functions

static memoryview from_buffer(void *ptr, ssize_t itemsize, const char *format,
                               detail::any_container<ssize_t> shape, detail::any_container<ssize_t> strides, bool readonly = false)

Creates memoryview from static buffer.
This method is meant for providing a memoryview for C/C++ buffer not managed by Python. The caller is responsible for managing the lifetime of ptr and format, which MUST outlive the memoryview constructed here.

See also: Python C API documentation for PyMemoryView_FromBuffer.

Parameters
- ptr – Pointer to the buffer.
- itemsize – Byte size of an element.
- format – Pointer to the null-terminated format string. For homogeneous Buffers, this should be set to format_descriptor<T>::value.
- shape – Shape of the tensor (1 entry per dimension).
- strides – Number of bytes between adjacent entries (for each per dimension).
- readonly – Flag to indicate if the underlying storage may be written to.

static inline memoryview from_memory(void *mem, ssize_t size, bool readonly = false)

Creates memoryview from static memory.
This method is meant for providing a memoryview for C/C++ buffer not managed by Python. The caller is responsible for managing the lifetime of mem, which MUST outlive the memoryview constructed here.

See also: Python C API documentation for PyMemoryView_FromBuffer.
18.4 Convenience functions converting to Python types

Template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
tuple make_tuple(Args&&... args_)

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename ValueType = typename detail::iterator_access<Iterator>::result_type, typename ...Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra&&... extra)
  Makes a python iterator from a first and past-the-end C++ InputIterator.

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename ...Extra>
iterator make_iterator(Type& value, Extra&&... extra)
  Makes an iterator over values of an stl container or other container supporting std::begin()/std::end()

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename KeyType = typename detail::iterator_key_access<Iterator>::result_type, typename ...Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra&&... extra)
  Makes a python iterator over the keys (.first) of a iterator over pairs from a first and past-the-end InputIterator.

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename ...Extra>
iterator make_key_iterator(Type& value, Extra&&... extra)
  Makes an iterator over the keys (.first) of a std::map-like container supporting std::begin()/std::end()

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename ValueType = typename detail::iterator_value_access<Iterator>::result_type, typename ...Extra>
iterator make_value_iterator(Iterator first, Sentinel last, Extra&&... extra)
  Makes a python iterator over the values (.second) of a iterator over pairs from a first and past-the-end InputIterator.

Template<return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename ...Extra>
iterator make_value_iterator(Type& value, Extra&&... extra)
  Makes an iterator over the values (.second) of a std::map-like container supporting std::begin()/std::end()

18.5 Passing extra arguments to def or class_
struct \texttt{doc}  
\hspace{1em} \#include <attr.h> Annotation for documentation.

struct \texttt{name}  
\hspace{1em} \#include <attr.h> Annotation for function names.

struct \texttt{sibling}  
\hspace{1em} \#include <attr.h> Annotation indicating that a function is an overload associated with a given “sibling”.

\texttt{template<typename T>}  
\texttt{struct base}  
\hspace{1em} \#include <attr.h> Annotation indicating that a class derives from another given type.

\texttt{template<size_t Nurse, size_t Patient>}  
\texttt{struct keep_alive}  
\hspace{1em} \#include <attr.h> Keep patient alive while nurse lives.

struct \texttt{multiple_inheritance}  
\hspace{1em} \#include <attr.h> Annotation indicating that a class is involved in a multiple inheritance relationship.

struct \texttt{dynamic_attr}  
\hspace{1em} \#include <attr.h> Annotation which enables dynamic attributes, i.e. adds \_\_dict\_\_ to a class.

struct \texttt{buffer_protocol}  
\hspace{1em} \#include <attr.h> Annotation which enables the buffer protocol for a type.

struct \texttt{metaclass}  
\hspace{1em} \#include <attr.h> Annotation which requests that a special metaclass is created for a type.

\textbf{Public Functions}

\texttt{inline explicit \texttt{metaclass-handle value)}}  
\hspace{2em} Override pybind11’s default metaclass.

struct \texttt{custom_type_setup}  
\hspace{1em} \#include <attr.h> Specifies a custom callback with signature \texttt{void (PyHeapTypeObject*)} that may be used to customize the Python type.

\hspace{2em} The callback is invoked immediately before \texttt{PyType\_Ready}.

\hspace{2em} Note: This is an advanced interface, and uses of it may require changes to work with later versions of pybind11. You may wish to consult the implementation of \texttt{make\_new\_python\_type in detail/classes.h} to understand the context in which the callback will be run.

struct \texttt{module_local}  
\hspace{1em} \#include <attr.h> Annotation that marks a class as local to the module:

struct \texttt{arithmetic}  
\hspace{1em} \#include <attr.h> Annotation to mark enums as an arithmetic type.

18.5. \textit{Passing extra arguments to \texttt{def} or \texttt{class}}
struct prepend
#include <attr.h> Mark a function for addition at the beginning of the existing overload chain instead of the end.

template<typename ...Ts>
struct call_guard
#include <attr.h>

A call policy which places one or more guard variables (Ts...) around the function call.

For example, this definition:

```cpp
m.def("foo", foo, py::call_guard<T>();
```

is equivalent to the following pseudocode:

```cpp
m.def("foo", [](args...) {
 T scope_guard;
 return foo(args...); // forwarded arguments
});
```

template<>
struct call_guard<>

struct call_guard<>

template<typename T>
struct call_guard<T>

template<typename T, typename ...Ts>
struct call_guard<T, Ts...>
inline `arg &none`(bool flag = true)  
    Indicates that the argument should/shouldn’t allow None (e.g. for nullable pointer args)

**Public Members**

const char *`name`  
    If non-null, this is a named kwargs argument.

bool `flag_noconvert`  
    If set, do not allow conversion (requires a supporting type caster!)

bool `flag_none`  
    If set (the default), allow None to be passed to this argument.

struct `arg_v` : public `arg`  
    #include `<cast.h>` Annotation for arguments with values

**Public Functions**

template<typename T>
inline `arg_v`(const char *name, T &&x, const char *descr = nullptr)  
    Direct construction with name, default, and description.

template<typename T>
inline `arg_v`(const `arg` &base, T &&x, const char *descr = nullptr)  
    Called internally when invoking py::arg("a") = value

inline `arg_v &noconvert`(bool flag = true)  
    Same as `arg::noconvert()`, but returns *this as `arg_v`&, not `arg`&.

inline `arg_v &none`(bool flag = true)  
    Same as `arg::nonone()`, but returns *this as `arg_v`&, not `arg`&.

**Public Members**

`object value`  
    The default value.

const char *`descr`  
    The (optional) description of the default value.

`std::string type`  
    The C++ type name of the default value (only available when compiled in debug mode)

struct `kw_only`  
    #include `<cast.h>` Annotation indicating that all following arguments are keyword-only; the is the equivalent of an unnamed ‘*’ argument

struct `pos_only`  
    #include `<cast.h>` Annotation indicating that all previous arguments are positional-only; the is the equivalent of an unnamed ‘/’ argument (in Python 3.8)
18.6 Embedding the interpreter

**PYBIND11_EMBEDDED_MODULE**(name, variable)

Add a new module to the table of builtins for the interpreter. Must be defined in global scope. The first macro parameter is the name of the module (without quotes). The second parameter is the variable which will be used as the interface to add functions and classes to the module.

```
PYBIND11_EMBEDDED_MODULE(example, m) {
 // ... initialize functions and classes here
 m.def("foo", []() {
 return "Hello, World!";
 });
}
```

`inline void initialize_interpreter(bool init_signal_handlers = true, int argc = 0, const char *const *argv = nullptr, bool add_program_dir_to_path = true)`

Initialize the Python interpreter. No other pybind11 or CPython API functions can be called before this is done; with the exception of **PYBIND11_EMBEDDED_MODULE**. The optional `init_signal_handlers` parameter can be used to skip the registration of signal handlers (see the Python documentation for details). Calling this function again after the interpreter has already been initialized is a fatal error.

If initializing the Python interpreter fails, then the program is terminated. (This is controlled by the CPython runtime and is an exception to pybind11’s normal behavior of throwing exceptions on errors.)

The remaining optional parameters, `argc`, `argv`, and `add_program_dir_to_path` are used to populate `sys.argv` and `sys.path`. See the `PySys_SetArgvEx` documentation for details.

`inline void finalize_interpreter()`

Shut down the Python interpreter. No pybind11 or CPython API functions can be called after this. In addition, pybind11 objects must not outlive the interpreter:

```
{ // BAD
 py::initialize_interpreter();
 auto hello = py::str("Hello, World!");
 py::finalize_interpreter();
} // <-- BOOM, hello's destructor is called after interpreter shutdown
```

```
{ // GOOD
 py::initialize_interpreter();
 { // scoped
 auto hello = py::str("Hello, World!");
 } // <-- OK, hello is cleaned up properly
 py::finalize_interpreter();
}
```

(continues on next page)
Warning: The interpreter can be restarted by calling `initialize_interpreter()` again. Modules created using pybind11 can be safely re-initialized. However, Python itself cannot completely unload binary extension modules and there are several caveats with regard to interpreter restarting. All the details can be found in the CPython documentation. In short, not all interpreter memory may be freed, either due to reference cycles or user-created global data.

```cpp
// BETTER
py::scoped_interpreter guard{};
auto hello = py::str("Hello, World!");
```

class `scoped_interpreter`

Scope guard version of `initialize_interpreter()` and `finalize_interpreter()`. This a move-only guard and only a single instance can exist.

See `initialize_interpreter()` for a discussion of its constructor arguments.

```cpp
#include <pybind11/embed.h>

int main() {
 py::scoped_interpreter guard{};
 py::print(Hello, World!); // <-- interpreter shutdown
}
```

### 18.7 Redirecting C++ streams

class `scoped_ostream_redirect`

This a move-only guard that redirects output.

```cpp
#include <pybind11/iostream.h>

...
{
 py::scoped_ostream_redirect output;
 std::cout << "Hello, World!"; // Python stdout
} // <-- return std::cout to normal
```

You can explicitly pass the c++ stream and the python object, for example to guard stderr instead.

```cpp
{
 py::scoped_ostream_redirect output{
```
std::cerr, py::module::import("sys").attr("stderr");
std::cout << "Hello, World!";
}

Subclassed by scoped_estream_redirect

class scoped_estream_redirect: public scoped_ostream_redirect

Like scoped_ostream_redirect, but redirects cerr by default. This class is provided primary to make py::call_guard easier to make.

```
m.def("noisy_func", &noisy_func,
 py::call_guard<scoped_ostream_redirect,
 scoped_estream_redirect>());
```

inline class_<detail::OstreamRedirect> add_ostream_redirect(module m, const std::string &name = "ostream_redirect")

This is a helper function to add a C++ redirect context manager to Python instead of using a C++ guard. To use it, add the following to your binding code:

```
#include <pybind11/iostream.h>
...
py::add_ostream_redirect(m, "ostream_redirect");
```

You now have a Python context manager that redirects your output:

```
with m.ostream_redirect():
 m.print_to_cout_function()
```

This manager can optionally be told which streams to operate on:

```
with m.ostream_redirect(stdout=true, stderr=true):
 m.noisy_function_with_error_printing()
```

18.8 Python built-in functions

`group python_builtins`

Unless stated otherwise, the following C++ functions behave the same as their Python counterparts.
Functions

inline `dict globals()`

    Return a dictionary representing the global variables in the current execution frame, or `__main__`. `__dict__` if there is no frame (usually when the interpreter is embedded).

template<typename T, detail::enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool `isinstance(handle obj)`

    Return true if `obj` is an instance of `T`. Type `T` must be a subclass of `object` or a class which was exposed to Python as `py::class_<T>`.

inline bool `isinstance(handle obj, handle type)`

    Return true if `obj` is an instance of the `type`.

inline bool `hasattr(handle obj, handle name)`

inline bool `hasattr(handle obj, const char *name)`

inline void `delattr(handle obj, handle name)`

inline void `delattr(handle obj, const char *name)`

inline `object getattr(handle obj, handle name)`

inline `object getattr(handle obj, const char *name)`

inline `object getattr(handle obj, handle name, handle default_)`

inline `object getattr(handle obj, handle name, handle default_)`

inline void `setattr(handle obj, handle name, handle value)`

inline void `setattr(handle obj, const char *name, handle value)`

inline ssize_t `hash(handle obj)`

inline size_t `len(handle h)`

    Get the length of a Python object.

inline size_t `len_hint(handle h)`

    Get the length hint of a Python object. Returns 0 when this cannot be determined.

inline `str repr(handle h)`

inline `iterator iter(handle obj)`

18.8. Python built-in functions
18.9 Inheritance

See *Object-oriented code* and *Classes* for more detail.

**PYBIND11_OVERRIDE**(ret_type, cname, fn, ...)

Macro to populate the virtual method in the trampoline class. This macro tries to look up the method from the Python side, deals with the *Global Interpreter Lock* (GIL) and necessary argument conversions to call this method and return the appropriate type. This macro should be used if the method name in C and in Python are identical. See *Overriding virtual functions in Python* for more information.

```cpp
class PyAnimal : public Animal {
public:
 // Inherit the constructors
 using Animal::Animal;

 // Trampoline (need one for each virtual function)
 std::string go(int n_times) override {
 PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times);
 }
};
```

**PYBIND11_OVERRIDE_PURE**(ret_type, cname, fn, ...)

Macro for pure virtual functions, this function is identical to **PYBIND11_OVERRIDE**, except that it throws if no override can be found.

**PYBIND11_OVERRIDE_NAME**(ret_type, cname, name, fn, ...)

Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named ‘fn’ from the Python side, deals with the *Global Interpreter Lock* (GIL) and necessary argument conversions to call this method and return the appropriate type. See *Overriding virtual functions in Python* for more information. This macro should be used when the method name in C is not the same as the method name in Python. For example with **__str__**.

```cpp
std::string toString() override {
 PYBIND11_OVERRIDE_NAME(std::string, Animal, "__str__", toString);
}
```
PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...)

Macro for pure virtual functions, this function is identical to PYBIND11_OVERRIDE_NAME, except that it throws
if no override can be found.

template<class T>
function get_override(const T *this_ptr, const char *name)

Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr.

This_ptr The pointer to the object the overridden method should be retrieved for. This should be the
first non-trampoline class encountered in the inheritance chain.

Name The name of the overridden Python method to retrieve.

Returns The Python method by this name from the object or an empty function wrapper.

18.10 Exceptions

class error_already_set : public runtime_error
    Fetch and hold an error which was already set in Python. An instance of this is typically thrown to propagate
    python-side errors back through C++ which can either be caught manually or else falls back to the function
    dispatcher (which then raises the captured error back to python).

    Public Functions

    inline error_already_set()
        Constructs a new exception from the current Python error indicator, if any. The current Python error indi-
        cator will be cleared.

    inline void restore()
        Give the currently-held error back to Python, if any. If there is currently a Python error already set it is
        cleared first. After this call, the current object no longer stores the error variables (but the .what() string
        is still available).

    inline void discard_as_unraisable(object err_context)
        If it is impossible to raise the currently-held error, such as in a destructor, we can write it out using Python’s
        unraisable hook (sys.unraisablehook). The error context should be some object whose repr() helps
        identify the location of the error. Python already knows the type and value of the error, so there is no need to
        repeat that. After this call, the current object no longer stores the error variables, and neither does Python.

    inline void discard_as_unraisable(const char *err_context)
        An alternate version of discard_as_unraisable(), where a string provides information on the location
        of the error. For example, __func__ could be helpful.

    inline bool matches(handle exc) const
        Check if the currently trapped error type matches the given Python exception class (or a subclass thereof).
        May also be passed a tuple to search for any exception class matches in the given tuple.

class builtin_exception : public runtime_error
    C++ bindings of builtin Python exceptions.
Public Functions

virtual void set_error() const = 0
    Set the error using the Python C API.

18.11 Literals

namespace literals

Functions

constexpr arg operator""_a(const char *name, size_t)
    String literal version of arg
inline str operator""_s(const char *, size_t size)
    String literal version of str
Pybind11 can be used with `add_subdirectory(extern/pybind11)`, or from an install with `find_package(pybind11 CONFIG)`. The interface provided in either case is functionally identical.

## 19.1 pybind11Config.cmake

### 19.1.1 Exported variables

This module sets the following variables in your project:

- `pybind11_FOUND` true if pybind11 and all required components found on the system
- `pybind11_VERSION` pybind11 version in format Major.Minor.Release
- `pybind11_VERSION_TYPE` pybind11 version type (dev* or empty for a release)
- `pybind11_INCLUDE_DIRS` Directories where pybind11 and python headers are located.
- `pybind11_INCLUDE_DIR` Directory where pybind11 headers are located.
- `pybind11_DEFINITIONS` Definitions necessary to use pybind11, namely USING_pybind11.
- `pybind11_LIBRARIES` Compile flags and python libraries (as needed) to link against.
- `pybind11_LIBRARY` Empty.

Available components: None

### 19.1.2 Exported targets

If pybind11 is found, this module defines the following `IMPORTED` interface library targets:

- `pybind11::module` for extension modules.
- `pybind11::embed` for embedding the Python interpreter.

Python headers, libraries (as needed by platform), and the C++ standard are attached to the target. Advanced targets are also supplied - these are primary for users building complex applications, and they are available in all modes:

- `pybind11::headers` Just the pybind11 headers and minimum compile requirements.
- `pybind11::pybind11` Python headers too.
- `pybind11::python_link_helper` Just the “linking” part of `pybind11::module`, for CMake < 3.15.
- `pybind11::thin_lto` An alternative to `INTERPROCEDURAL_OPTIMIZATION`. 
pybind11::lto  An alternative to INTERPROCEDURAL_Optimization (also avoids thin LTO on clang).

pybind11::windows_extras  Adds bigobj and mp for MSVC.

19.1.3 Modes

There are two modes provided; classic, which is built on the old Python discovery packages in CMake, or the new FindPython mode, which uses FindPython from 3.12+ forward (3.15+ _highly_ recommended).

New FindPython mode

To activate this mode, either call find_package(Python COMPONENTS Interpreter Development) before finding this package, or set the PYBIND11_FINDPYTHON variable to ON. In this mode, you can either use the basic targets, or use the FindPython tools:

```cmake
find_package(Python COMPONENTS Interpreter Development)
find_package(pybind11 CONFIG)

pybind11 method:
pybind11_add_module(MyModule1 src1.cpp)

Python method:
Python_add_library(MyModule2 src2.cpp)
target_link_libraries(MyModule2 pybind11::headers)
set_target_properties(MyModule2 PROPERTIES
 INTERPROCEDURAL_Optimization ON
 CXX_VISIBILITY_PRESET ON
 VISIBILITY_INLINES_HIDDEN ON)
```

If you build targets yourself, you may be interested in stripping the output for reduced size; this is the one other feature that the helper function gives you.

Classic mode

Set PythonLibsNew variables to influence python detection and CMAKE_CXX_STANDARD to influence standard setting.

```cmake
find_package(pybind11 CONFIG REQUIRED)

Create an extension module
add_library(mylib MODULE main.cpp)
target_link_libraries(mylib PUBLIC pybind11::module)

Or embed the Python interpreter into an executable
add_executable(myexe main.cpp)
target_link_libraries(myexe PUBLIC pybind11::embed)
```
19.1.4 Hints

The following variables can be set to guide the search for this package:

- **pybind11_DIR**  CMake variable, set to directory containing this Config file.
- **CMAKE_PREFIX_PATH**  CMake variable, set to root directory of this package.
- **PATH**  Environment variable, set to bin directory of this package.
- **CMAKE_DISABLE_FIND_PACKAGE_pybind11**  CMake variable, disables `find_package(pybind11)` when not `REQUIRED`, perhaps to force internal build.

19.1.5 Commands

**pybind11_add_module**

This module defines the following commands to assist with creating Python modules:

```cpp
pybind11_add_module(<target>
 [STATIC|SHARED|MODULE]
 [THIN_LTO] [OPT_SIZE] [NO_EXTRAS] [WITHOUT_SOABI]
 <files>...
)
```

Add a module and setup all helpers. You can select the type of the library; the default is `MODULE`. There are several options:

- **OPT_SIZE**  Optimize for size, even if the `CMAKE_BUILD_TYPE` is not `MinSizeRel`.
- **THIN_LTO**  Use thin TLO instead of regular if there's a choice (pybind11’s selection is disabled if `CMAKE_INTERPROCEDURAL_OPTIMIZATIONS` is set).
- **WITHOUT_SOABI**  Disable the SOABI component (PYBIND11_NEWPYTHON mode only).
- **NO_EXTRAS**  Disable all extras, exit immediately after making the module.

**pybind11_strip**

```cpp
pybind11_strip(<target>)
```

Strip a target after building it (linux/macOS), called by `pybind11_add_module`.

**pybind11_extension**

```cpp
pybind11_extension(<target>)
```

Sets the Python extension name correctly for Python on your platform, called by `pybind11_add_module`.
pybind11_find_import(module)

See if a module is installed. Use the registered name (the one on PyPI). You can specify a VERSION, and you can specify REQUIRED or QUIET. Only available if NOPYTHON mode is not active. Sets module_VERSION and module_FOUND. Caches the result once a valid install is found.

19.1.6 Suggested usage

Using find_package with version info is not recommended except for release versions.

```text
find_package(pybind11 CONFIG)
find_package(pybind11 2.9 EXACT CONFIG REQUIRED)
```
BIBLIOGRAPHY

[python_example]  https://github.com/pybind/python_example

[Ccache]  https://ccache.dev

[setuptools_scm]  https://github.com/pypa/setuptools_scm

[cppimport]  https://github.com/tbenthompson/cppimport

[cmake_example]  https://github.com/pybind/cmake_example


[AutoWIG]  https://github.com/StatisKit/AutoWIG

[robotpy-build]  https://robotpy-build.readthedocs.io
A

add_ostream_redirect (C++ function), 172
arg (C++ struct), 168
arg::arg (C++ function), 168
arg::flag_noconvert (C++ member), 169
arg::flag_none (C++ member), 169
arg::name (C++ member), 169
arg::noconvert (C++ function), 168
arg::none (C++ function), 168
arg::operator= (C++ function), 168
arg_v (C++ struct), 169
arg_v::arg_v (C++ function), 169
arg_v::descr (C++ member), 169
arg_v::noconvert (C++ function), 169
arg_v::none (C++ function), 169
arg_v::type (C++ member), 169
arg_v::value (C++ member), 169
args (C++ class), 164
args_are_all_keyword_or_ds (C++ function), 162
arithmetic (C++ struct), 167
as_unsigned (C++ function), 162

B

base (C++ struct), 167
bool_ (C++ class), 163
buffer (C++ class), 164
buffer_protocol (C++ struct), 167
builtin_exception (C++ class), 175
builtin_exception::set_error (C++ function), 176
bytearray (C++ class), 163
bytes (C++ class), 163

call_guard (C++ struct), 168
call_guard<> (C++ struct), 168
call_guard<T, Ts...> (C++ struct), 168
call_guard<T, Ts...>::type (C++ struct), 168
call_guard<T> (C++ struct), 168
capsule (C++ class), 164
custom_type_setup (C++ struct), 167

d

delattr (C++ function), 173
dict (C++ class), 164
doc (C++ struct), 166
dynamic_attr (C++ struct), 167

e

ellipsis (C++ class), 163
error_already_set (C++ class), 175
error_already_set::discard_as_unraisable (C++ function), 175
error_already_set::error_already_set (C++ function), 175
error_already_set::matches (C++ function), 175
error_already_set::restore (C++ function), 175

F

finalize_interpreter (C++ function), 170
float_ (C++ class), 163
function (C++ class), 164

g

get_override (C++ function), 175
getattr (C++ function), 173
globals (C++ function), 173

H

handle (C++ class), 159
handle::cast (C++ function), 159
handle::dec_ref (C++ function), 159
handle::handle (C++ function), 159
handle::inc_ref (C++ function), 159
handle::operator bool (C++ function), 159
handle::operator== (C++ function), 159
handle::ptr (C++ function), 159
hasattr (C++ function), 173
hash (C++ function), 173

I

initialize_interpreter (C++ function), 170
int_ (C++ class), 163
is_final (C++ struct), 166
is_method (C++ struct), 166
is_operator (C++ struct), 166
isinstance (C++ function), 173
iter (C++ function), 173
iterable (C++ class), 163
iterator (C++ class), 162
iterator::sentinel (C++ function), 162

K
keep_alive (C++ struct), 167
ekw_only (C++ struct), 169
kwargs (C++ class), 164

L
len (C++ function), 173
len_hint (C++ function), 173
list (C++ class), 164
literals (C++ type), 176
literals::operator""_a (C++ function), 176
literals::operator""_s (C++ function), 176

M
make_iterator (C++ function), 166
make_key_iterator (C++ function), 166
make_tuple (C++ function), 166
make_value_iterator (C++ function), 166
memoryview (C++ function), 164
memoryview::from_buffer (C++ function), 165
memoryview::from_memory (C++ function), 165
memoryview::memoryview (C++ function), 165
metaclass (C++ struct), 167
metaclass::metaclass (C++ function), 167
module_ (C++ class), 161
module_::add_object (C++ function), 161
module_::create_extension_module (C++ function), 162
module_::def (C++ function), 161
module_::def_submodule (C++ function), 161
module_::import (C++ function), 162
module_::module_ (C++ function), 161
module_::reload (C++ function), 161
module_local (C++ struct), 167
multiple_inheritance (C++ struct), 167

N
name (C++ struct), 167
none (C++ class), 163

O
object (C++ class), 160
object::object (C++ function), 160
object::object (C++ function), 160

object::release (C++ function), 160
object_api (C++ class), 157
object_api::attr (C++ function), 158
object_api::begin (C++ function), 158
object_api::contains (C++ function), 158
object_api::doc (C++ function), 158
object_api::end (C++ function), 158
object_api::equal (C++ function), 158
object_api::is (C++ function), 158
object_api::is_none (C++ function), 158
object_api::operator() (C++ function), 158
object_api::operator* (C++ function), 158
object_api::operator[] (C++ function), 158
object_api::ref_count (C++ function), 159

P
pos_only (C++ struct), 169
prepend (C++ struct), 167
PYBIND11_EMBEDDED_MODULE (C macro), 170
PYBIND11_MODULE (C macro), 157
PYBIND11_OVERRIDE (C macro), 174
PYBIND11_OVERRIDE_NAME (C macro), 174
PYBIND11_OVERRIDEPURE (C macro), 174
PYBIND11_OVERRIDEPURE_NAME (C macro), 174

R
reinterpret_borrow (C++ function), 160
reinterpret_steal (C++ function), 160
repr (C++ function), 173

S
scope (C++ struct), 166
scoped_estream_redirect (C++ class), 172
scoped_interpreter (C++ class), 171
scoped_ostream_redirect (C++ class), 171
sequence (C++ class), 164
set (C++ class), 164
setattr (C++ function), 173
siblings (C++ struct), 167
slice (C++ class), 164
staticmethod (C++ class), 164
str (C++ class), 163
str::str (C++ function), 163

T
tuple (C++ class), 164
type (C++ class), 162
type::handle_of (C++ function), 163
type::of (C++ function), 163

weakref (C++ class), 163